| [831] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| [1315] | 27 | // $Id: G4PolyconeSide.cc,v 1.24 2010/02/24 11:31:49 gcosmo Exp $
|
|---|
| [1337] | 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| [831] | 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | // --------------------------------------------------------------------
|
|---|
| 32 | // GEANT 4 class source file
|
|---|
| 33 | //
|
|---|
| 34 | //
|
|---|
| 35 | // G4PolyconeSide.cc
|
|---|
| 36 | //
|
|---|
| 37 | // Implementation of the face representing one conical side of a polycone
|
|---|
| 38 | //
|
|---|
| 39 | // --------------------------------------------------------------------
|
|---|
| 40 |
|
|---|
| 41 | #include "G4PolyconeSide.hh"
|
|---|
| 42 | #include "G4IntersectingCone.hh"
|
|---|
| 43 | #include "G4ClippablePolygon.hh"
|
|---|
| 44 | #include "G4AffineTransform.hh"
|
|---|
| 45 | #include "meshdefs.hh"
|
|---|
| 46 | #include "G4SolidExtentList.hh"
|
|---|
| 47 | #include "G4GeometryTolerance.hh"
|
|---|
| 48 |
|
|---|
| [850] | 49 | #include "Randomize.hh"
|
|---|
| 50 |
|
|---|
| [831] | 51 | //
|
|---|
| 52 | // Constructor
|
|---|
| 53 | //
|
|---|
| 54 | // Values for r1,z1 and r2,z2 should be specified in clockwise
|
|---|
| 55 | // order in (r,z).
|
|---|
| 56 | //
|
|---|
| 57 | G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ,
|
|---|
| 58 | const G4PolyconeSideRZ *tail,
|
|---|
| 59 | const G4PolyconeSideRZ *head,
|
|---|
| 60 | const G4PolyconeSideRZ *nextRZ,
|
|---|
| 61 | G4double thePhiStart,
|
|---|
| 62 | G4double theDeltaPhi,
|
|---|
| 63 | G4bool thePhiIsOpen,
|
|---|
| 64 | G4bool isAllBehind )
|
|---|
| 65 | : ncorners(0), corners(0)
|
|---|
| 66 | {
|
|---|
| 67 | kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
|
|---|
| [850] | 68 | fSurfaceArea = 0.0;
|
|---|
| [1315] | 69 | fPhi.first = G4ThreeVector(0,0,0);
|
|---|
| 70 | fPhi.second= 0.0;
|
|---|
| [831] | 71 |
|
|---|
| 72 | //
|
|---|
| 73 | // Record values
|
|---|
| 74 | //
|
|---|
| 75 | r[0] = tail->r; z[0] = tail->z;
|
|---|
| 76 | r[1] = head->r; z[1] = head->z;
|
|---|
| 77 |
|
|---|
| 78 | phiIsOpen = thePhiIsOpen;
|
|---|
| 79 | if (phiIsOpen)
|
|---|
| 80 | {
|
|---|
| 81 | deltaPhi = theDeltaPhi;
|
|---|
| 82 | startPhi = thePhiStart;
|
|---|
| 83 |
|
|---|
| 84 | //
|
|---|
| 85 | // Set phi values to our conventions
|
|---|
| 86 | //
|
|---|
| 87 | while (deltaPhi < 0.0) deltaPhi += twopi;
|
|---|
| 88 | while (startPhi < 0.0) startPhi += twopi;
|
|---|
| 89 |
|
|---|
| 90 | //
|
|---|
| 91 | // Calculate corner coordinates
|
|---|
| 92 | //
|
|---|
| 93 | ncorners = 4;
|
|---|
| 94 | corners = new G4ThreeVector[ncorners];
|
|---|
| 95 |
|
|---|
| 96 | corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
|
|---|
| 97 | tail->r*std::sin(startPhi), tail->z );
|
|---|
| 98 | corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
|
|---|
| 99 | head->r*std::sin(startPhi), head->z );
|
|---|
| 100 | corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
|
|---|
| 101 | tail->r*std::sin(startPhi+deltaPhi), tail->z );
|
|---|
| 102 | corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
|
|---|
| 103 | head->r*std::sin(startPhi+deltaPhi), head->z );
|
|---|
| 104 | }
|
|---|
| 105 | else
|
|---|
| 106 | {
|
|---|
| 107 | deltaPhi = twopi;
|
|---|
| 108 | startPhi = 0.0;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | allBehind = isAllBehind;
|
|---|
| 112 |
|
|---|
| 113 | //
|
|---|
| 114 | // Make our intersecting cone
|
|---|
| 115 | //
|
|---|
| 116 | cone = new G4IntersectingCone( r, z );
|
|---|
| 117 |
|
|---|
| 118 | //
|
|---|
| 119 | // Calculate vectors in r,z space
|
|---|
| 120 | //
|
|---|
| 121 | rS = r[1]-r[0]; zS = z[1]-z[0];
|
|---|
| 122 | length = std::sqrt( rS*rS + zS*zS);
|
|---|
| 123 | rS /= length; zS /= length;
|
|---|
| 124 |
|
|---|
| 125 | rNorm = +zS;
|
|---|
| 126 | zNorm = -rS;
|
|---|
| 127 |
|
|---|
| 128 | G4double lAdj;
|
|---|
| 129 |
|
|---|
| 130 | prevRS = r[0]-prevRZ->r;
|
|---|
| 131 | prevZS = z[0]-prevRZ->z;
|
|---|
| 132 | lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
|
|---|
| 133 | prevRS /= lAdj;
|
|---|
| 134 | prevZS /= lAdj;
|
|---|
| 135 |
|
|---|
| 136 | rNormEdge[0] = rNorm + prevZS;
|
|---|
| 137 | zNormEdge[0] = zNorm - prevRS;
|
|---|
| 138 | lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
|
|---|
| 139 | rNormEdge[0] /= lAdj;
|
|---|
| 140 | zNormEdge[0] /= lAdj;
|
|---|
| 141 |
|
|---|
| 142 | nextRS = nextRZ->r-r[1];
|
|---|
| 143 | nextZS = nextRZ->z-z[1];
|
|---|
| 144 | lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
|
|---|
| 145 | nextRS /= lAdj;
|
|---|
| 146 | nextZS /= lAdj;
|
|---|
| 147 |
|
|---|
| 148 | rNormEdge[1] = rNorm + nextZS;
|
|---|
| 149 | zNormEdge[1] = zNorm - nextRS;
|
|---|
| 150 | lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
|
|---|
| 151 | rNormEdge[1] /= lAdj;
|
|---|
| 152 | zNormEdge[1] /= lAdj;
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 |
|
|---|
| 156 | //
|
|---|
| 157 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 158 | // for usage restricted to object persistency.
|
|---|
| 159 | //
|
|---|
| 160 | G4PolyconeSide::G4PolyconeSide( __void__& )
|
|---|
| 161 | : phiIsOpen(false), cone(0), ncorners(0), corners(0)
|
|---|
| 162 | {
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 |
|
|---|
| 166 | //
|
|---|
| 167 | // Destructor
|
|---|
| 168 | //
|
|---|
| 169 | G4PolyconeSide::~G4PolyconeSide()
|
|---|
| 170 | {
|
|---|
| 171 | delete cone;
|
|---|
| 172 | if (phiIsOpen) delete [] corners;
|
|---|
| 173 | }
|
|---|
| 174 |
|
|---|
| 175 |
|
|---|
| 176 | //
|
|---|
| 177 | // Copy constructor
|
|---|
| 178 | //
|
|---|
| 179 | G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source )
|
|---|
| 180 | : G4VCSGface()
|
|---|
| 181 | {
|
|---|
| 182 | CopyStuff( source );
|
|---|
| 183 | }
|
|---|
| 184 |
|
|---|
| 185 |
|
|---|
| 186 | //
|
|---|
| 187 | // Assignment operator
|
|---|
| 188 | //
|
|---|
| 189 | G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source )
|
|---|
| 190 | {
|
|---|
| 191 | if (this == &source) return *this;
|
|---|
| 192 |
|
|---|
| 193 | delete cone;
|
|---|
| 194 | if (phiIsOpen) delete [] corners;
|
|---|
| 195 |
|
|---|
| 196 | CopyStuff( source );
|
|---|
| 197 |
|
|---|
| 198 | return *this;
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 |
|
|---|
| 202 | //
|
|---|
| 203 | // CopyStuff
|
|---|
| 204 | //
|
|---|
| 205 | void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source )
|
|---|
| 206 | {
|
|---|
| 207 | r[0] = source.r[0];
|
|---|
| 208 | r[1] = source.r[1];
|
|---|
| 209 | z[0] = source.z[0];
|
|---|
| 210 | z[1] = source.z[1];
|
|---|
| 211 |
|
|---|
| 212 | startPhi = source.startPhi;
|
|---|
| 213 | deltaPhi = source.deltaPhi;
|
|---|
| 214 | phiIsOpen = source.phiIsOpen;
|
|---|
| 215 | allBehind = source.allBehind;
|
|---|
| 216 |
|
|---|
| 217 | kCarTolerance = source.kCarTolerance;
|
|---|
| [850] | 218 | fSurfaceArea = source.fSurfaceArea;
|
|---|
| [831] | 219 |
|
|---|
| 220 | cone = new G4IntersectingCone( *source.cone );
|
|---|
| 221 |
|
|---|
| 222 | rNorm = source.rNorm;
|
|---|
| 223 | zNorm = source.zNorm;
|
|---|
| 224 | rS = source.rS;
|
|---|
| 225 | zS = source.zS;
|
|---|
| 226 | length = source.length;
|
|---|
| 227 | prevRS = source.prevRS;
|
|---|
| 228 | prevZS = source.prevZS;
|
|---|
| 229 | nextRS = source.nextRS;
|
|---|
| 230 | nextZS = source.nextZS;
|
|---|
| 231 |
|
|---|
| 232 | rNormEdge[0] = source.rNormEdge[0];
|
|---|
| 233 | rNormEdge[1] = source.rNormEdge[1];
|
|---|
| 234 | zNormEdge[0] = source.zNormEdge[0];
|
|---|
| 235 | zNormEdge[1] = source.zNormEdge[1];
|
|---|
| 236 |
|
|---|
| 237 | if (phiIsOpen)
|
|---|
| 238 | {
|
|---|
| 239 | ncorners = 4;
|
|---|
| 240 | corners = new G4ThreeVector[ncorners];
|
|---|
| 241 |
|
|---|
| 242 | corners[0] = source.corners[0];
|
|---|
| 243 | corners[1] = source.corners[1];
|
|---|
| 244 | corners[2] = source.corners[2];
|
|---|
| 245 | corners[3] = source.corners[3];
|
|---|
| 246 | }
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 |
|
|---|
| 250 | //
|
|---|
| 251 | // Intersect
|
|---|
| 252 | //
|
|---|
| 253 | G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p,
|
|---|
| 254 | const G4ThreeVector &v,
|
|---|
| 255 | G4bool outgoing,
|
|---|
| 256 | G4double surfTolerance,
|
|---|
| 257 | G4double &distance,
|
|---|
| 258 | G4double &distFromSurface,
|
|---|
| 259 | G4ThreeVector &normal,
|
|---|
| 260 | G4bool &isAllBehind )
|
|---|
| 261 | {
|
|---|
| 262 | G4double s1, s2;
|
|---|
| 263 | G4double normSign = outgoing ? +1 : -1;
|
|---|
| 264 |
|
|---|
| 265 | isAllBehind = allBehind;
|
|---|
| 266 |
|
|---|
| 267 | //
|
|---|
| 268 | // Check for two possible intersections
|
|---|
| 269 | //
|
|---|
| 270 | G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
|
|---|
| 271 | if (nside == 0) return false;
|
|---|
| 272 |
|
|---|
| 273 | //
|
|---|
| 274 | // Check the first side first, since it is (supposed to be) closest
|
|---|
| 275 | //
|
|---|
| 276 | G4ThreeVector hit = p + s1*v;
|
|---|
| 277 |
|
|---|
| 278 | if (PointOnCone( hit, normSign, p, v, normal ))
|
|---|
| 279 | {
|
|---|
| 280 | //
|
|---|
| 281 | // Good intersection! What about the normal?
|
|---|
| 282 | //
|
|---|
| 283 | if (normSign*v.dot(normal) > 0)
|
|---|
| 284 | {
|
|---|
| 285 | //
|
|---|
| 286 | // We have a valid intersection, but it could very easily
|
|---|
| 287 | // be behind the point. To decide if we tolerate this,
|
|---|
| 288 | // we have to see if the point p is on the surface near
|
|---|
| 289 | // the intersecting point.
|
|---|
| 290 | //
|
|---|
| 291 | // What does it mean exactly for the point p to be "near"
|
|---|
| 292 | // the intersection? It means that if we draw a line from
|
|---|
| 293 | // p to the hit, the line remains entirely within the
|
|---|
| 294 | // tolerance bounds of the cone. To test this, we can
|
|---|
| 295 | // ask if the normal is correct near p.
|
|---|
| 296 | //
|
|---|
| 297 | G4double pr = p.perp();
|
|---|
| 298 | if (pr < DBL_MIN) pr = DBL_MIN;
|
|---|
| 299 | G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
|
|---|
| 300 | if (normSign*v.dot(pNormal) > 0)
|
|---|
| 301 | {
|
|---|
| 302 | //
|
|---|
| 303 | // p and intersection in same hemisphere
|
|---|
| 304 | //
|
|---|
| 305 | G4double distOutside2;
|
|---|
| 306 | distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
|
|---|
| 307 | if (distOutside2 < surfTolerance*surfTolerance)
|
|---|
| 308 | {
|
|---|
| 309 | if (distFromSurface > -surfTolerance)
|
|---|
| 310 | {
|
|---|
| 311 | //
|
|---|
| 312 | // We are just inside or away from the
|
|---|
| 313 | // surface. Accept *any* value of distance.
|
|---|
| 314 | //
|
|---|
| 315 | distance = s1;
|
|---|
| 316 | return true;
|
|---|
| 317 | }
|
|---|
| 318 | }
|
|---|
| 319 | }
|
|---|
| 320 | else
|
|---|
| 321 | distFromSurface = s1;
|
|---|
| 322 |
|
|---|
| 323 | //
|
|---|
| 324 | // Accept positive distances
|
|---|
| 325 | //
|
|---|
| 326 | if (s1 > 0)
|
|---|
| 327 | {
|
|---|
| 328 | distance = s1;
|
|---|
| 329 | return true;
|
|---|
| 330 | }
|
|---|
| 331 | }
|
|---|
| 332 | }
|
|---|
| 333 |
|
|---|
| 334 | if (nside==1) return false;
|
|---|
| 335 |
|
|---|
| 336 | //
|
|---|
| 337 | // Well, try the second hit
|
|---|
| 338 | //
|
|---|
| 339 | hit = p + s2*v;
|
|---|
| 340 |
|
|---|
| 341 | if (PointOnCone( hit, normSign, p, v, normal ))
|
|---|
| 342 | {
|
|---|
| 343 | //
|
|---|
| 344 | // Good intersection! What about the normal?
|
|---|
| 345 | //
|
|---|
| 346 | if (normSign*v.dot(normal) > 0)
|
|---|
| 347 | {
|
|---|
| 348 | G4double pr = p.perp();
|
|---|
| 349 | if (pr < DBL_MIN) pr = DBL_MIN;
|
|---|
| 350 | G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
|
|---|
| 351 | if (normSign*v.dot(pNormal) > 0)
|
|---|
| 352 | {
|
|---|
| 353 | G4double distOutside2;
|
|---|
| 354 | distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
|
|---|
| 355 | if (distOutside2 < surfTolerance*surfTolerance)
|
|---|
| 356 | {
|
|---|
| 357 | if (distFromSurface > -surfTolerance)
|
|---|
| 358 | {
|
|---|
| 359 | distance = s2;
|
|---|
| 360 | return true;
|
|---|
| 361 | }
|
|---|
| 362 | }
|
|---|
| 363 | }
|
|---|
| 364 | else
|
|---|
| 365 | distFromSurface = s2;
|
|---|
| 366 |
|
|---|
| 367 | if (s2 > 0)
|
|---|
| 368 | {
|
|---|
| 369 | distance = s2;
|
|---|
| 370 | return true;
|
|---|
| 371 | }
|
|---|
| 372 | }
|
|---|
| 373 | }
|
|---|
| 374 |
|
|---|
| 375 | //
|
|---|
| 376 | // Better luck next time
|
|---|
| 377 | //
|
|---|
| 378 | return false;
|
|---|
| 379 | }
|
|---|
| 380 |
|
|---|
| 381 |
|
|---|
| 382 | G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing )
|
|---|
| 383 | {
|
|---|
| 384 | G4double normSign = outgoing ? -1 : +1;
|
|---|
| 385 | G4double distFrom, distOut2;
|
|---|
| 386 |
|
|---|
| 387 | //
|
|---|
| 388 | // We have two tries for each hemisphere. Try the closest first.
|
|---|
| 389 | //
|
|---|
| 390 | distFrom = normSign*DistanceAway( p, false, distOut2 );
|
|---|
| 391 | if (distFrom > -0.5*kCarTolerance )
|
|---|
| 392 | {
|
|---|
| 393 | //
|
|---|
| 394 | // Good answer
|
|---|
| 395 | //
|
|---|
| 396 | if (distOut2 > 0)
|
|---|
| 397 | return std::sqrt( distFrom*distFrom + distOut2 );
|
|---|
| 398 | else
|
|---|
| 399 | return std::fabs(distFrom);
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | //
|
|---|
| 403 | // Try second side.
|
|---|
| 404 | //
|
|---|
| 405 | distFrom = normSign*DistanceAway( p, true, distOut2 );
|
|---|
| 406 | if (distFrom > -0.5*kCarTolerance)
|
|---|
| 407 | {
|
|---|
| 408 |
|
|---|
| 409 | if (distOut2 > 0)
|
|---|
| 410 | return std::sqrt( distFrom*distFrom + distOut2 );
|
|---|
| 411 | else
|
|---|
| 412 | return std::fabs(distFrom);
|
|---|
| 413 | }
|
|---|
| 414 |
|
|---|
| 415 | return kInfinity;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 |
|
|---|
| 419 | //
|
|---|
| 420 | // Inside
|
|---|
| 421 | //
|
|---|
| 422 | EInside G4PolyconeSide::Inside( const G4ThreeVector &p,
|
|---|
| 423 | G4double tolerance,
|
|---|
| 424 | G4double *bestDistance )
|
|---|
| 425 | {
|
|---|
| 426 | //
|
|---|
| 427 | // Check both sides
|
|---|
| 428 | //
|
|---|
| 429 | G4double distFrom[2], distOut2[2], dist2[2];
|
|---|
| 430 | G4double edgeRZnorm[2];
|
|---|
| 431 |
|
|---|
| 432 | distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm );
|
|---|
| 433 | distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 );
|
|---|
| 434 |
|
|---|
| 435 | dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
|
|---|
| 436 | dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
|
|---|
| 437 |
|
|---|
| 438 | //
|
|---|
| 439 | // Who's closest?
|
|---|
| 440 | //
|
|---|
| 441 | G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
|
|---|
| 442 |
|
|---|
| 443 | *bestDistance = std::sqrt( dist2[i] );
|
|---|
| 444 |
|
|---|
| 445 | //
|
|---|
| 446 | // Okay then, inside or out?
|
|---|
| 447 | //
|
|---|
| 448 | if ( (std::fabs(edgeRZnorm[i]) < tolerance)
|
|---|
| 449 | && (distOut2[i] < tolerance*tolerance) )
|
|---|
| 450 | return kSurface;
|
|---|
| 451 | else if (edgeRZnorm[i] < 0)
|
|---|
| 452 | return kInside;
|
|---|
| 453 | else
|
|---|
| 454 | return kOutside;
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 |
|
|---|
| 458 | //
|
|---|
| 459 | // Normal
|
|---|
| 460 | //
|
|---|
| 461 | G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p,
|
|---|
| 462 | G4double *bestDistance )
|
|---|
| 463 | {
|
|---|
| 464 | if (p == G4ThreeVector(0.,0.,0.)) { return p; }
|
|---|
| 465 |
|
|---|
| [1228] | 466 | G4double dFrom, dOut2;
|
|---|
| [831] | 467 |
|
|---|
| 468 | dFrom = DistanceAway( p, false, dOut2 );
|
|---|
| 469 |
|
|---|
| 470 | *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
|
|---|
| 471 |
|
|---|
| 472 | G4double rad = p.perp();
|
|---|
| [1228] | 473 | if (rad!=0.) { return G4ThreeVector(rNorm*p.x()/rad,rNorm*p.y()/rad,zNorm); }
|
|---|
| 474 | return G4ThreeVector( 0.,0., zNorm ).unit();
|
|---|
| [831] | 475 | }
|
|---|
| 476 |
|
|---|
| 477 |
|
|---|
| 478 | //
|
|---|
| 479 | // Extent
|
|---|
| 480 | //
|
|---|
| 481 | G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
|
|---|
| 482 | {
|
|---|
| 483 | if (axis.perp2() < DBL_MIN)
|
|---|
| 484 | {
|
|---|
| 485 | //
|
|---|
| 486 | // Special case
|
|---|
| 487 | //
|
|---|
| 488 | return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
|
|---|
| 489 | }
|
|---|
| 490 |
|
|---|
| 491 | //
|
|---|
| 492 | // Is the axis pointing inside our phi gap?
|
|---|
| 493 | //
|
|---|
| 494 | if (phiIsOpen)
|
|---|
| 495 | {
|
|---|
| [1315] | 496 | G4double phi = GetPhi(axis);
|
|---|
| [831] | 497 | while( phi < startPhi ) phi += twopi;
|
|---|
| 498 |
|
|---|
| 499 | if (phi > deltaPhi+startPhi)
|
|---|
| 500 | {
|
|---|
| 501 | //
|
|---|
| 502 | // Yeah, looks so. Make four three vectors defining the phi
|
|---|
| 503 | // opening
|
|---|
| 504 | //
|
|---|
| 505 | G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
|
|---|
| 506 | G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
|
|---|
| 507 | G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
|
|---|
| 508 | cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
|
|---|
| 509 | G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
|
|---|
| 510 | G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
|
|---|
| 511 |
|
|---|
| 512 | G4double ad = axis.dot(a),
|
|---|
| 513 | bd = axis.dot(b),
|
|---|
| 514 | cd = axis.dot(c),
|
|---|
| 515 | dd = axis.dot(d);
|
|---|
| 516 |
|
|---|
| 517 | if (bd > ad) ad = bd;
|
|---|
| 518 | if (cd > ad) ad = cd;
|
|---|
| 519 | if (dd > ad) ad = dd;
|
|---|
| 520 |
|
|---|
| 521 | return ad;
|
|---|
| 522 | }
|
|---|
| 523 | }
|
|---|
| 524 |
|
|---|
| 525 | //
|
|---|
| 526 | // Check either end
|
|---|
| 527 | //
|
|---|
| 528 | G4double aPerp = axis.perp();
|
|---|
| 529 |
|
|---|
| 530 | G4double a = aPerp*r[0] + axis.z()*z[0];
|
|---|
| 531 | G4double b = aPerp*r[1] + axis.z()*z[1];
|
|---|
| 532 |
|
|---|
| 533 | if (b > a) a = b;
|
|---|
| 534 |
|
|---|
| 535 | return a;
|
|---|
| 536 | }
|
|---|
| 537 |
|
|---|
| 538 |
|
|---|
| 539 |
|
|---|
| 540 | //
|
|---|
| 541 | // CalculateExtent
|
|---|
| 542 | //
|
|---|
| 543 | // See notes in G4VCSGface
|
|---|
| 544 | //
|
|---|
| 545 | void G4PolyconeSide::CalculateExtent( const EAxis axis,
|
|---|
| 546 | const G4VoxelLimits &voxelLimit,
|
|---|
| 547 | const G4AffineTransform &transform,
|
|---|
| 548 | G4SolidExtentList &extentList )
|
|---|
| 549 | {
|
|---|
| 550 | G4ClippablePolygon polygon;
|
|---|
| 551 |
|
|---|
| 552 | //
|
|---|
| 553 | // Here we will approximate (ala G4Cons) and divide our conical section
|
|---|
| 554 | // into segments, like G4Polyhedra. When doing so, the radius
|
|---|
| 555 | // is extented far enough such that the segments always lie
|
|---|
| 556 | // just outside the surface of the conical section we are
|
|---|
| 557 | // approximating.
|
|---|
| 558 | //
|
|---|
| 559 |
|
|---|
| 560 | //
|
|---|
| 561 | // Choose phi size of our segment(s) based on constants as
|
|---|
| 562 | // defined in meshdefs.hh
|
|---|
| 563 | //
|
|---|
| 564 | G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
|
|---|
| 565 | if (numPhi < kMinMeshSections)
|
|---|
| 566 | numPhi = kMinMeshSections;
|
|---|
| 567 | else if (numPhi > kMaxMeshSections)
|
|---|
| 568 | numPhi = kMaxMeshSections;
|
|---|
| 569 |
|
|---|
| 570 | G4double sigPhi = deltaPhi/numPhi;
|
|---|
| 571 |
|
|---|
| 572 | //
|
|---|
| 573 | // Determine radius factor to keep segments outside
|
|---|
| 574 | //
|
|---|
| 575 | G4double rFudge = 1.0/std::cos(0.5*sigPhi);
|
|---|
| 576 |
|
|---|
| 577 | //
|
|---|
| 578 | // Decide which radius to use on each end of the side,
|
|---|
| 579 | // and whether a transition mesh is required
|
|---|
| 580 | //
|
|---|
| 581 | // {r0,z0} - Beginning of this side
|
|---|
| 582 | // {r1,z1} - Ending of this side
|
|---|
| 583 | // {r2,z0} - Beginning of transition piece connecting previous
|
|---|
| 584 | // side (and ends at beginning of this side)
|
|---|
| 585 | //
|
|---|
| 586 | // So, order is 2 --> 0 --> 1.
|
|---|
| 587 | // -------
|
|---|
| 588 | //
|
|---|
| 589 | // r2 < 0 indicates that no transition piece is required
|
|---|
| 590 | //
|
|---|
| 591 | G4double r0, r1, r2, z0, z1;
|
|---|
| 592 |
|
|---|
| 593 | r2 = -1; // By default: no transition piece
|
|---|
| 594 |
|
|---|
| 595 | if (rNorm < -DBL_MIN)
|
|---|
| 596 | {
|
|---|
| 597 | //
|
|---|
| 598 | // This side faces *inward*, and so our mesh has
|
|---|
| 599 | // the same radius
|
|---|
| 600 | //
|
|---|
| 601 | r1 = r[1];
|
|---|
| 602 | z1 = z[1];
|
|---|
| 603 | z0 = z[0];
|
|---|
| 604 | r0 = r[0];
|
|---|
| 605 |
|
|---|
| 606 | r2 = -1;
|
|---|
| 607 |
|
|---|
| 608 | if (prevZS > DBL_MIN)
|
|---|
| 609 | {
|
|---|
| 610 | //
|
|---|
| 611 | // The previous side is facing outwards
|
|---|
| 612 | //
|
|---|
| 613 | if ( prevRS*zS - prevZS*rS > 0 )
|
|---|
| 614 | {
|
|---|
| 615 | //
|
|---|
| 616 | // Transition was convex: build transition piece
|
|---|
| 617 | //
|
|---|
| 618 | if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
|
|---|
| 619 | }
|
|---|
| 620 | else
|
|---|
| 621 | {
|
|---|
| 622 | //
|
|---|
| 623 | // Transition was concave: short this side
|
|---|
| 624 | //
|
|---|
| 625 | FindLineIntersect( z0, r0, zS, rS,
|
|---|
| 626 | z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
|
|---|
| 627 | }
|
|---|
| 628 | }
|
|---|
| 629 |
|
|---|
| 630 | if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
|
|---|
| 631 | {
|
|---|
| 632 | //
|
|---|
| 633 | // The next side is facing outwards, forming a
|
|---|
| 634 | // concave transition: short this side
|
|---|
| 635 | //
|
|---|
| 636 | FindLineIntersect( z1, r1, zS, rS,
|
|---|
| 637 | z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
|
|---|
| 638 | }
|
|---|
| 639 | }
|
|---|
| 640 | else if (rNorm > DBL_MIN)
|
|---|
| 641 | {
|
|---|
| 642 | //
|
|---|
| 643 | // This side faces *outward* and is given a boost to
|
|---|
| 644 | // it radius
|
|---|
| 645 | //
|
|---|
| 646 | r0 = r[0]*rFudge;
|
|---|
| 647 | z0 = z[0];
|
|---|
| 648 | r1 = r[1]*rFudge;
|
|---|
| 649 | z1 = z[1];
|
|---|
| 650 |
|
|---|
| 651 | if (prevZS < -DBL_MIN)
|
|---|
| 652 | {
|
|---|
| 653 | //
|
|---|
| 654 | // The previous side is facing inwards
|
|---|
| 655 | //
|
|---|
| 656 | if ( prevRS*zS - prevZS*rS > 0 )
|
|---|
| 657 | {
|
|---|
| 658 | //
|
|---|
| 659 | // Transition was convex: build transition piece
|
|---|
| 660 | //
|
|---|
| 661 | if (r[0] > DBL_MIN) r2 = r[0];
|
|---|
| 662 | }
|
|---|
| 663 | else
|
|---|
| 664 | {
|
|---|
| 665 | //
|
|---|
| 666 | // Transition was concave: short this side
|
|---|
| 667 | //
|
|---|
| 668 | FindLineIntersect( z0, r0, zS, rS*rFudge,
|
|---|
| 669 | z0, r[0], prevZS, prevRS, z0, r0 );
|
|---|
| 670 | }
|
|---|
| 671 | }
|
|---|
| 672 |
|
|---|
| 673 | if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
|
|---|
| 674 | {
|
|---|
| 675 | //
|
|---|
| 676 | // The next side is facing inwards, forming a
|
|---|
| 677 | // concave transition: short this side
|
|---|
| 678 | //
|
|---|
| 679 | FindLineIntersect( z1, r1, zS, rS*rFudge,
|
|---|
| 680 | z1, r[1], nextZS, nextRS, z1, r1 );
|
|---|
| 681 | }
|
|---|
| 682 | }
|
|---|
| 683 | else
|
|---|
| 684 | {
|
|---|
| 685 | //
|
|---|
| 686 | // This side is perpendicular to the z axis (is a disk)
|
|---|
| 687 | //
|
|---|
| 688 | // Whether or not r0 needs a rFudge factor depends
|
|---|
| 689 | // on the normal of the previous edge. Similar with r1
|
|---|
| 690 | // and the next edge. No transition piece is required.
|
|---|
| 691 | //
|
|---|
| 692 | r0 = r[0];
|
|---|
| 693 | r1 = r[1];
|
|---|
| 694 | z0 = z[0];
|
|---|
| 695 | z1 = z[1];
|
|---|
| 696 |
|
|---|
| 697 | if (prevZS > DBL_MIN) r0 *= rFudge;
|
|---|
| 698 | if (nextZS > DBL_MIN) r1 *= rFudge;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 | //
|
|---|
| 702 | // Loop
|
|---|
| 703 | //
|
|---|
| 704 | G4double phi = startPhi,
|
|---|
| 705 | cosPhi = std::cos(phi),
|
|---|
| 706 | sinPhi = std::sin(phi);
|
|---|
| 707 |
|
|---|
| 708 | G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
|
|---|
| 709 | v1( r1*cosPhi, r1*sinPhi, z1 ),
|
|---|
| 710 | v2, w0, w1, w2;
|
|---|
| 711 | transform.ApplyPointTransform( v0 );
|
|---|
| 712 | transform.ApplyPointTransform( v1 );
|
|---|
| 713 |
|
|---|
| 714 | if (r2 >= 0)
|
|---|
| 715 | {
|
|---|
| 716 | v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
|
|---|
| 717 | transform.ApplyPointTransform( v2 );
|
|---|
| 718 | }
|
|---|
| 719 |
|
|---|
| 720 | do
|
|---|
| 721 | {
|
|---|
| 722 | phi += sigPhi;
|
|---|
| 723 | if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff
|
|---|
| 724 | cosPhi = std::cos(phi),
|
|---|
| 725 | sinPhi = std::sin(phi);
|
|---|
| 726 |
|
|---|
| 727 | w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
|
|---|
| 728 | w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
|
|---|
| 729 | transform.ApplyPointTransform( w0 );
|
|---|
| 730 | transform.ApplyPointTransform( w1 );
|
|---|
| 731 |
|
|---|
| 732 | G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
|
|---|
| 733 |
|
|---|
| 734 | //
|
|---|
| 735 | // Build polygon, taking special care to keep the vertices
|
|---|
| 736 | // in order
|
|---|
| 737 | //
|
|---|
| 738 | polygon.ClearAllVertices();
|
|---|
| 739 |
|
|---|
| 740 | polygon.AddVertexInOrder( v0 );
|
|---|
| 741 | polygon.AddVertexInOrder( v1 );
|
|---|
| 742 | polygon.AddVertexInOrder( w1 );
|
|---|
| 743 | polygon.AddVertexInOrder( w0 );
|
|---|
| 744 |
|
|---|
| 745 | //
|
|---|
| 746 | // Get extent
|
|---|
| 747 | //
|
|---|
| 748 | if (polygon.PartialClip( voxelLimit, axis ))
|
|---|
| 749 | {
|
|---|
| 750 | //
|
|---|
| 751 | // Get dot product of normal with target axis
|
|---|
| 752 | //
|
|---|
| 753 | polygon.SetNormal( deltaV.cross(v1-v0).unit() );
|
|---|
| 754 |
|
|---|
| 755 | extentList.AddSurface( polygon );
|
|---|
| 756 | }
|
|---|
| 757 |
|
|---|
| 758 | if (r2 >= 0)
|
|---|
| 759 | {
|
|---|
| 760 | //
|
|---|
| 761 | // Repeat, for transition piece
|
|---|
| 762 | //
|
|---|
| 763 | w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
|
|---|
| 764 | transform.ApplyPointTransform( w2 );
|
|---|
| 765 |
|
|---|
| 766 | polygon.ClearAllVertices();
|
|---|
| 767 |
|
|---|
| 768 | polygon.AddVertexInOrder( v2 );
|
|---|
| 769 | polygon.AddVertexInOrder( v0 );
|
|---|
| 770 | polygon.AddVertexInOrder( w0 );
|
|---|
| 771 | polygon.AddVertexInOrder( w2 );
|
|---|
| 772 |
|
|---|
| 773 | if (polygon.PartialClip( voxelLimit, axis ))
|
|---|
| 774 | {
|
|---|
| 775 | polygon.SetNormal( deltaV.cross(v0-v2).unit() );
|
|---|
| 776 |
|
|---|
| 777 | extentList.AddSurface( polygon );
|
|---|
| 778 | }
|
|---|
| 779 |
|
|---|
| 780 | v2 = w2;
|
|---|
| 781 | }
|
|---|
| 782 |
|
|---|
| 783 | //
|
|---|
| 784 | // Next vertex
|
|---|
| 785 | //
|
|---|
| 786 | v0 = w0;
|
|---|
| 787 | v1 = w1;
|
|---|
| 788 | } while( --numPhi > 0 );
|
|---|
| 789 |
|
|---|
| 790 | //
|
|---|
| 791 | // We are almost done. But, it is important that we leave no
|
|---|
| 792 | // gaps in the surface of our solid. By using rFudge, however,
|
|---|
| 793 | // we've done exactly that, if we have a phi segment.
|
|---|
| 794 | // Add two additional faces if necessary
|
|---|
| 795 | //
|
|---|
| 796 | if (phiIsOpen && rNorm > DBL_MIN)
|
|---|
| 797 | {
|
|---|
| 798 | G4double cosPhi = std::cos(startPhi),
|
|---|
| 799 | sinPhi = std::sin(startPhi);
|
|---|
| 800 |
|
|---|
| 801 | G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
|
|---|
| 802 | a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
|
|---|
| 803 | b0( r0*cosPhi, r0*sinPhi, z[0] ),
|
|---|
| 804 | b1( r1*cosPhi, r1*sinPhi, z[1] );
|
|---|
| 805 |
|
|---|
| 806 | transform.ApplyPointTransform( a0 );
|
|---|
| 807 | transform.ApplyPointTransform( a1 );
|
|---|
| 808 | transform.ApplyPointTransform( b0 );
|
|---|
| 809 | transform.ApplyPointTransform( b1 );
|
|---|
| 810 |
|
|---|
| 811 | polygon.ClearAllVertices();
|
|---|
| 812 |
|
|---|
| 813 | polygon.AddVertexInOrder( a0 );
|
|---|
| 814 | polygon.AddVertexInOrder( a1 );
|
|---|
| 815 | polygon.AddVertexInOrder( b0 );
|
|---|
| 816 | polygon.AddVertexInOrder( b1 );
|
|---|
| 817 |
|
|---|
| 818 | if (polygon.PartialClip( voxelLimit , axis))
|
|---|
| 819 | {
|
|---|
| 820 | G4ThreeVector normal( sinPhi, -cosPhi, 0 );
|
|---|
| 821 | polygon.SetNormal( transform.TransformAxis( normal ) );
|
|---|
| 822 |
|
|---|
| 823 | extentList.AddSurface( polygon );
|
|---|
| 824 | }
|
|---|
| 825 |
|
|---|
| 826 | cosPhi = std::cos(startPhi+deltaPhi);
|
|---|
| 827 | sinPhi = std::sin(startPhi+deltaPhi);
|
|---|
| 828 |
|
|---|
| 829 | a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
|
|---|
| 830 | a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
|
|---|
| 831 | b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
|
|---|
| 832 | b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
|
|---|
| 833 | transform.ApplyPointTransform( a0 );
|
|---|
| 834 | transform.ApplyPointTransform( a1 );
|
|---|
| 835 | transform.ApplyPointTransform( b0 );
|
|---|
| 836 | transform.ApplyPointTransform( b1 );
|
|---|
| 837 |
|
|---|
| 838 | polygon.ClearAllVertices();
|
|---|
| 839 |
|
|---|
| 840 | polygon.AddVertexInOrder( a0 );
|
|---|
| 841 | polygon.AddVertexInOrder( a1 );
|
|---|
| 842 | polygon.AddVertexInOrder( b0 );
|
|---|
| 843 | polygon.AddVertexInOrder( b1 );
|
|---|
| 844 |
|
|---|
| 845 | if (polygon.PartialClip( voxelLimit, axis ))
|
|---|
| 846 | {
|
|---|
| 847 | G4ThreeVector normal( -sinPhi, cosPhi, 0 );
|
|---|
| 848 | polygon.SetNormal( transform.TransformAxis( normal ) );
|
|---|
| 849 |
|
|---|
| 850 | extentList.AddSurface( polygon );
|
|---|
| 851 | }
|
|---|
| 852 | }
|
|---|
| 853 |
|
|---|
| 854 | return;
|
|---|
| 855 | }
|
|---|
| 856 |
|
|---|
| [1315] | 857 | //
|
|---|
| 858 | // GetPhi
|
|---|
| 859 | //
|
|---|
| 860 | // Calculate Phi for a given 3-vector (point), if not already cached for the
|
|---|
| 861 | // same point, in the attempt to avoid consecutive computation of the same
|
|---|
| 862 | // quantity
|
|---|
| 863 | //
|
|---|
| 864 | G4double G4PolyconeSide::GetPhi( const G4ThreeVector& p )
|
|---|
| 865 | {
|
|---|
| 866 | G4double val=0.;
|
|---|
| [831] | 867 |
|
|---|
| [1315] | 868 | if (fPhi.first != p)
|
|---|
| 869 | {
|
|---|
| 870 | val = p.phi();
|
|---|
| 871 | fPhi.first = p;
|
|---|
| 872 | fPhi.second = val;
|
|---|
| 873 | }
|
|---|
| 874 | else
|
|---|
| 875 | {
|
|---|
| 876 | val = fPhi.second;
|
|---|
| 877 | }
|
|---|
| 878 | return val;
|
|---|
| 879 | }
|
|---|
| 880 |
|
|---|
| [831] | 881 | //
|
|---|
| 882 | // DistanceAway
|
|---|
| 883 | //
|
|---|
| 884 | // Calculate distance of a point from our conical surface, including the effect
|
|---|
| 885 | // of any phi segmentation
|
|---|
| 886 | //
|
|---|
| 887 | // Arguments:
|
|---|
| 888 | // p - (in) Point to check
|
|---|
| 889 | // opposite - (in) If true, check opposite hemisphere (see below)
|
|---|
| 890 | // distOutside - (out) Additional distance outside the edges of the surface
|
|---|
| 891 | // edgeRZnorm - (out) if negative, point is inside
|
|---|
| 892 | //
|
|---|
| 893 | // return value = distance from the conical plane, if extrapolated beyond edges,
|
|---|
| 894 | // signed by whether the point is in inside or outside the shape
|
|---|
| 895 | //
|
|---|
| 896 | // Notes:
|
|---|
| 897 | // * There are two answers, depending on which hemisphere is considered.
|
|---|
| 898 | //
|
|---|
| 899 | G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p,
|
|---|
| 900 | G4bool opposite,
|
|---|
| 901 | G4double &distOutside2,
|
|---|
| 902 | G4double *edgeRZnorm )
|
|---|
| 903 | {
|
|---|
| 904 | //
|
|---|
| 905 | // Convert our point to r and z
|
|---|
| 906 | //
|
|---|
| 907 | G4double rx = p.perp(), zx = p.z();
|
|---|
| 908 |
|
|---|
| 909 | //
|
|---|
| 910 | // Change sign of r if opposite says we should
|
|---|
| 911 | //
|
|---|
| 912 | if (opposite) rx = -rx;
|
|---|
| 913 |
|
|---|
| 914 | //
|
|---|
| 915 | // Calculate return value
|
|---|
| 916 | //
|
|---|
| 917 | G4double deltaR = rx - r[0], deltaZ = zx - z[0];
|
|---|
| 918 | G4double answer = deltaR*rNorm + deltaZ*zNorm;
|
|---|
| 919 |
|
|---|
| 920 | //
|
|---|
| 921 | // Are we off the surface in r,z space?
|
|---|
| 922 | //
|
|---|
| 923 | G4double s = deltaR*rS + deltaZ*zS;
|
|---|
| 924 | if (s < 0)
|
|---|
| 925 | {
|
|---|
| 926 | distOutside2 = s*s;
|
|---|
| 927 | if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
|
|---|
| 928 | }
|
|---|
| 929 | else if (s > length)
|
|---|
| 930 | {
|
|---|
| 931 | distOutside2 = sqr( s-length );
|
|---|
| 932 | if (edgeRZnorm)
|
|---|
| 933 | {
|
|---|
| 934 | G4double deltaR = rx - r[1], deltaZ = zx - z[1];
|
|---|
| 935 | *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
|
|---|
| 936 | }
|
|---|
| 937 | }
|
|---|
| 938 | else
|
|---|
| 939 | {
|
|---|
| 940 | distOutside2 = 0;
|
|---|
| 941 | if (edgeRZnorm) *edgeRZnorm = answer;
|
|---|
| 942 | }
|
|---|
| 943 |
|
|---|
| 944 | if (phiIsOpen)
|
|---|
| 945 | {
|
|---|
| 946 | //
|
|---|
| 947 | // Finally, check phi
|
|---|
| 948 | //
|
|---|
| [1315] | 949 | G4double phi = GetPhi(p);
|
|---|
| [831] | 950 | while( phi < startPhi ) phi += twopi;
|
|---|
| 951 |
|
|---|
| 952 | if (phi > startPhi+deltaPhi)
|
|---|
| 953 | {
|
|---|
| 954 | //
|
|---|
| 955 | // Oops. Are we closer to the start phi or end phi?
|
|---|
| 956 | //
|
|---|
| 957 | G4double d1 = phi-startPhi-deltaPhi;
|
|---|
| 958 | while( phi > startPhi ) phi -= twopi;
|
|---|
| 959 | G4double d2 = startPhi-phi;
|
|---|
| 960 |
|
|---|
| 961 | if (d2 < d1) d1 = d2;
|
|---|
| 962 |
|
|---|
| 963 | //
|
|---|
| 964 | // Add result to our distance
|
|---|
| 965 | //
|
|---|
| 966 | G4double dist = d1*rx;
|
|---|
| 967 |
|
|---|
| 968 | distOutside2 += dist*dist;
|
|---|
| 969 | if (edgeRZnorm)
|
|---|
| 970 | {
|
|---|
| 971 | *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
|
|---|
| 972 | }
|
|---|
| 973 | }
|
|---|
| 974 | }
|
|---|
| 975 |
|
|---|
| 976 | return answer;
|
|---|
| 977 | }
|
|---|
| 978 |
|
|---|
| 979 |
|
|---|
| 980 | //
|
|---|
| 981 | // PointOnCone
|
|---|
| 982 | //
|
|---|
| 983 | // Decide if a point is on a cone and return normal if it is
|
|---|
| 984 | //
|
|---|
| 985 | G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit,
|
|---|
| 986 | G4double normSign,
|
|---|
| 987 | const G4ThreeVector &p,
|
|---|
| 988 | const G4ThreeVector &v,
|
|---|
| 989 | G4ThreeVector &normal )
|
|---|
| 990 | {
|
|---|
| 991 | G4double rx = hit.perp();
|
|---|
| 992 | //
|
|---|
| 993 | // Check radial/z extent, as appropriate
|
|---|
| 994 | //
|
|---|
| 995 | if (!cone->HitOn( rx, hit.z() )) return false;
|
|---|
| 996 |
|
|---|
| 997 | if (phiIsOpen)
|
|---|
| 998 | {
|
|---|
| 999 | G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
|
|---|
| 1000 | //
|
|---|
| 1001 | // Check phi segment. Here we have to be careful
|
|---|
| 1002 | // to use the standard method consistent with
|
|---|
| 1003 | // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
|
|---|
| 1004 | //
|
|---|
| [1315] | 1005 | G4double phi = GetPhi(hit);
|
|---|
| [831] | 1006 | while( phi < startPhi-phiTolerant ) phi += twopi;
|
|---|
| 1007 |
|
|---|
| 1008 | if (phi > startPhi+deltaPhi+phiTolerant) return false;
|
|---|
| 1009 |
|
|---|
| 1010 | if (phi > startPhi+deltaPhi-phiTolerant)
|
|---|
| 1011 | {
|
|---|
| 1012 | //
|
|---|
| 1013 | // Exact treatment
|
|---|
| 1014 | //
|
|---|
| 1015 | G4ThreeVector qx = p + v;
|
|---|
| 1016 | G4ThreeVector qa = qx - corners[2],
|
|---|
| 1017 | qb = qx - corners[3];
|
|---|
| 1018 | G4ThreeVector qacb = qa.cross(qb);
|
|---|
| 1019 |
|
|---|
| 1020 | if (normSign*qacb.dot(v) < 0) return false;
|
|---|
| 1021 | }
|
|---|
| 1022 | else if (phi < phiTolerant)
|
|---|
| 1023 | {
|
|---|
| 1024 | G4ThreeVector qx = p + v;
|
|---|
| 1025 | G4ThreeVector qa = qx - corners[1],
|
|---|
| 1026 | qb = qx - corners[0];
|
|---|
| 1027 | G4ThreeVector qacb = qa.cross(qb);
|
|---|
| 1028 |
|
|---|
| 1029 | if (normSign*qacb.dot(v) < 0) return false;
|
|---|
| 1030 | }
|
|---|
| 1031 | }
|
|---|
| 1032 |
|
|---|
| 1033 | //
|
|---|
| 1034 | // We have a good hit! Calculate normal
|
|---|
| 1035 | //
|
|---|
| 1036 | if (rx < DBL_MIN)
|
|---|
| 1037 | normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
|
|---|
| 1038 | else
|
|---|
| 1039 | normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
|
|---|
| 1040 | return true;
|
|---|
| 1041 | }
|
|---|
| 1042 |
|
|---|
| 1043 |
|
|---|
| 1044 | //
|
|---|
| 1045 | // FindLineIntersect
|
|---|
| 1046 | //
|
|---|
| 1047 | // Decide the point at which two 2-dimensional lines intersect
|
|---|
| 1048 | //
|
|---|
| 1049 | // Equation of line: x = x1 + s*tx1
|
|---|
| 1050 | // y = y1 + s*ty1
|
|---|
| 1051 | //
|
|---|
| 1052 | // It is assumed that the lines are *not* parallel
|
|---|
| 1053 | //
|
|---|
| 1054 | void G4PolyconeSide::FindLineIntersect( G4double x1, G4double y1,
|
|---|
| 1055 | G4double tx1, G4double ty1,
|
|---|
| 1056 | G4double x2, G4double y2,
|
|---|
| 1057 | G4double tx2, G4double ty2,
|
|---|
| 1058 | G4double &x, G4double &y )
|
|---|
| 1059 | {
|
|---|
| 1060 | //
|
|---|
| 1061 | // The solution is a simple linear equation
|
|---|
| 1062 | //
|
|---|
| 1063 | G4double deter = tx1*ty2 - tx2*ty1;
|
|---|
| 1064 |
|
|---|
| 1065 | G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
|
|---|
| 1066 | G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
|
|---|
| 1067 |
|
|---|
| 1068 | //
|
|---|
| 1069 | // We want the answer to not depend on which order the
|
|---|
| 1070 | // lines were specified. Take average.
|
|---|
| 1071 | //
|
|---|
| 1072 | x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
|
|---|
| 1073 | y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
|
|---|
| 1074 | }
|
|---|
| [850] | 1075 |
|
|---|
| 1076 | //
|
|---|
| 1077 | // Calculate surface area for GetPointOnSurface()
|
|---|
| 1078 | //
|
|---|
| 1079 | G4double G4PolyconeSide::SurfaceArea()
|
|---|
| 1080 | {
|
|---|
| 1081 | if(fSurfaceArea==0)
|
|---|
| 1082 | {
|
|---|
| 1083 | fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
|
|---|
| 1084 | fSurfaceArea *= 0.5*(deltaPhi);
|
|---|
| 1085 | }
|
|---|
| 1086 | return fSurfaceArea;
|
|---|
| 1087 | }
|
|---|
| 1088 |
|
|---|
| 1089 | //
|
|---|
| 1090 | // GetPointOnFace
|
|---|
| 1091 | //
|
|---|
| 1092 | G4ThreeVector G4PolyconeSide::GetPointOnFace()
|
|---|
| 1093 | {
|
|---|
| 1094 | G4double x,y,zz;
|
|---|
| 1095 | G4double rr,phi,dz,dr;
|
|---|
| 1096 | dr=r[1]-r[0];dz=z[1]-z[0];
|
|---|
| 1097 | phi=startPhi+deltaPhi*G4UniformRand();
|
|---|
| 1098 | rr=r[0]+dr*G4UniformRand();
|
|---|
| 1099 |
|
|---|
| 1100 | x=rr*std::cos(phi);
|
|---|
| 1101 | y=rr*std::sin(phi);
|
|---|
| 1102 |
|
|---|
| 1103 | // PolyconeSide has a Ring Form
|
|---|
| 1104 | //
|
|---|
| 1105 | if (dz==0.)
|
|---|
| 1106 | {
|
|---|
| 1107 | zz=z[0];
|
|---|
| 1108 | }
|
|---|
| 1109 | else
|
|---|
| 1110 | {
|
|---|
| 1111 | if(dr==0.) // PolyconeSide has a Tube Form
|
|---|
| 1112 | {
|
|---|
| 1113 | zz = z[0]+dz*G4UniformRand();
|
|---|
| 1114 | }
|
|---|
| 1115 | else
|
|---|
| 1116 | {
|
|---|
| 1117 | zz = z[0]+(rr-r[0])*dz/dr;
|
|---|
| 1118 | }
|
|---|
| 1119 | }
|
|---|
| 1120 |
|
|---|
| 1121 | return G4ThreeVector(x,y,zz);
|
|---|
| 1122 | }
|
|---|