source: trunk/source/geometry/solids/specific/src/G4PolyconeSide.cc@ 1093

Last change on this file since 1093 was 1058, checked in by garnier, 17 years ago

file release beta

File size: 27.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4PolyconeSide.cc,v 1.19 2008/05/15 11:41:59 gcosmo Exp $
28// GEANT4 tag $Name: geant4-09-02-ref-02 $
29//
30//
31// --------------------------------------------------------------------
32// GEANT 4 class source file
33//
34//
35// G4PolyconeSide.cc
36//
37// Implementation of the face representing one conical side of a polycone
38//
39// --------------------------------------------------------------------
40
41#include "G4PolyconeSide.hh"
42#include "G4IntersectingCone.hh"
43#include "G4ClippablePolygon.hh"
44#include "G4AffineTransform.hh"
45#include "meshdefs.hh"
46#include "G4SolidExtentList.hh"
47#include "G4GeometryTolerance.hh"
48
49#include "Randomize.hh"
50
51//
52// Constructor
53//
54// Values for r1,z1 and r2,z2 should be specified in clockwise
55// order in (r,z).
56//
57G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ,
58 const G4PolyconeSideRZ *tail,
59 const G4PolyconeSideRZ *head,
60 const G4PolyconeSideRZ *nextRZ,
61 G4double thePhiStart,
62 G4double theDeltaPhi,
63 G4bool thePhiIsOpen,
64 G4bool isAllBehind )
65 : ncorners(0), corners(0)
66{
67 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
68 fSurfaceArea = 0.0;
69
70 //
71 // Record values
72 //
73 r[0] = tail->r; z[0] = tail->z;
74 r[1] = head->r; z[1] = head->z;
75
76 phiIsOpen = thePhiIsOpen;
77 if (phiIsOpen)
78 {
79 deltaPhi = theDeltaPhi;
80 startPhi = thePhiStart;
81
82 //
83 // Set phi values to our conventions
84 //
85 while (deltaPhi < 0.0) deltaPhi += twopi;
86 while (startPhi < 0.0) startPhi += twopi;
87
88 //
89 // Calculate corner coordinates
90 //
91 ncorners = 4;
92 corners = new G4ThreeVector[ncorners];
93
94 corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
95 tail->r*std::sin(startPhi), tail->z );
96 corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
97 head->r*std::sin(startPhi), head->z );
98 corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
99 tail->r*std::sin(startPhi+deltaPhi), tail->z );
100 corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
101 head->r*std::sin(startPhi+deltaPhi), head->z );
102 }
103 else
104 {
105 deltaPhi = twopi;
106 startPhi = 0.0;
107 }
108
109 allBehind = isAllBehind;
110
111 //
112 // Make our intersecting cone
113 //
114 cone = new G4IntersectingCone( r, z );
115
116 //
117 // Calculate vectors in r,z space
118 //
119 rS = r[1]-r[0]; zS = z[1]-z[0];
120 length = std::sqrt( rS*rS + zS*zS);
121 rS /= length; zS /= length;
122
123 rNorm = +zS;
124 zNorm = -rS;
125
126 G4double lAdj;
127
128 prevRS = r[0]-prevRZ->r;
129 prevZS = z[0]-prevRZ->z;
130 lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
131 prevRS /= lAdj;
132 prevZS /= lAdj;
133
134 rNormEdge[0] = rNorm + prevZS;
135 zNormEdge[0] = zNorm - prevRS;
136 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
137 rNormEdge[0] /= lAdj;
138 zNormEdge[0] /= lAdj;
139
140 nextRS = nextRZ->r-r[1];
141 nextZS = nextRZ->z-z[1];
142 lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
143 nextRS /= lAdj;
144 nextZS /= lAdj;
145
146 rNormEdge[1] = rNorm + nextZS;
147 zNormEdge[1] = zNorm - nextRS;
148 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
149 rNormEdge[1] /= lAdj;
150 zNormEdge[1] /= lAdj;
151}
152
153
154//
155// Fake default constructor - sets only member data and allocates memory
156// for usage restricted to object persistency.
157//
158G4PolyconeSide::G4PolyconeSide( __void__& )
159 : phiIsOpen(false), cone(0), ncorners(0), corners(0)
160{
161}
162
163
164//
165// Destructor
166//
167G4PolyconeSide::~G4PolyconeSide()
168{
169 delete cone;
170 if (phiIsOpen) delete [] corners;
171}
172
173
174//
175// Copy constructor
176//
177G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source )
178 : G4VCSGface()
179{
180 CopyStuff( source );
181}
182
183
184//
185// Assignment operator
186//
187G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source )
188{
189 if (this == &source) return *this;
190
191 delete cone;
192 if (phiIsOpen) delete [] corners;
193
194 CopyStuff( source );
195
196 return *this;
197}
198
199
200//
201// CopyStuff
202//
203void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source )
204{
205 r[0] = source.r[0];
206 r[1] = source.r[1];
207 z[0] = source.z[0];
208 z[1] = source.z[1];
209
210 startPhi = source.startPhi;
211 deltaPhi = source.deltaPhi;
212 phiIsOpen = source.phiIsOpen;
213 allBehind = source.allBehind;
214
215 kCarTolerance = source.kCarTolerance;
216 fSurfaceArea = source.fSurfaceArea;
217
218 cone = new G4IntersectingCone( *source.cone );
219
220 rNorm = source.rNorm;
221 zNorm = source.zNorm;
222 rS = source.rS;
223 zS = source.zS;
224 length = source.length;
225 prevRS = source.prevRS;
226 prevZS = source.prevZS;
227 nextRS = source.nextRS;
228 nextZS = source.nextZS;
229
230 rNormEdge[0] = source.rNormEdge[0];
231 rNormEdge[1] = source.rNormEdge[1];
232 zNormEdge[0] = source.zNormEdge[0];
233 zNormEdge[1] = source.zNormEdge[1];
234
235 if (phiIsOpen)
236 {
237 ncorners = 4;
238 corners = new G4ThreeVector[ncorners];
239
240 corners[0] = source.corners[0];
241 corners[1] = source.corners[1];
242 corners[2] = source.corners[2];
243 corners[3] = source.corners[3];
244 }
245}
246
247
248//
249// Intersect
250//
251G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p,
252 const G4ThreeVector &v,
253 G4bool outgoing,
254 G4double surfTolerance,
255 G4double &distance,
256 G4double &distFromSurface,
257 G4ThreeVector &normal,
258 G4bool &isAllBehind )
259{
260 G4double s1, s2;
261 G4double normSign = outgoing ? +1 : -1;
262
263 isAllBehind = allBehind;
264
265 //
266 // Check for two possible intersections
267 //
268 G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
269 if (nside == 0) return false;
270
271 //
272 // Check the first side first, since it is (supposed to be) closest
273 //
274 G4ThreeVector hit = p + s1*v;
275
276 if (PointOnCone( hit, normSign, p, v, normal ))
277 {
278 //
279 // Good intersection! What about the normal?
280 //
281 if (normSign*v.dot(normal) > 0)
282 {
283 //
284 // We have a valid intersection, but it could very easily
285 // be behind the point. To decide if we tolerate this,
286 // we have to see if the point p is on the surface near
287 // the intersecting point.
288 //
289 // What does it mean exactly for the point p to be "near"
290 // the intersection? It means that if we draw a line from
291 // p to the hit, the line remains entirely within the
292 // tolerance bounds of the cone. To test this, we can
293 // ask if the normal is correct near p.
294 //
295 G4double pr = p.perp();
296 if (pr < DBL_MIN) pr = DBL_MIN;
297 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
298 if (normSign*v.dot(pNormal) > 0)
299 {
300 //
301 // p and intersection in same hemisphere
302 //
303 G4double distOutside2;
304 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
305 if (distOutside2 < surfTolerance*surfTolerance)
306 {
307 if (distFromSurface > -surfTolerance)
308 {
309 //
310 // We are just inside or away from the
311 // surface. Accept *any* value of distance.
312 //
313 distance = s1;
314 return true;
315 }
316 }
317 }
318 else
319 distFromSurface = s1;
320
321 //
322 // Accept positive distances
323 //
324 if (s1 > 0)
325 {
326 distance = s1;
327 return true;
328 }
329 }
330 }
331
332 if (nside==1) return false;
333
334 //
335 // Well, try the second hit
336 //
337 hit = p + s2*v;
338
339 if (PointOnCone( hit, normSign, p, v, normal ))
340 {
341 //
342 // Good intersection! What about the normal?
343 //
344 if (normSign*v.dot(normal) > 0)
345 {
346 G4double pr = p.perp();
347 if (pr < DBL_MIN) pr = DBL_MIN;
348 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
349 if (normSign*v.dot(pNormal) > 0)
350 {
351 G4double distOutside2;
352 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
353 if (distOutside2 < surfTolerance*surfTolerance)
354 {
355 if (distFromSurface > -surfTolerance)
356 {
357 distance = s2;
358 return true;
359 }
360 }
361 }
362 else
363 distFromSurface = s2;
364
365 if (s2 > 0)
366 {
367 distance = s2;
368 return true;
369 }
370 }
371 }
372
373 //
374 // Better luck next time
375 //
376 return false;
377}
378
379
380G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing )
381{
382 G4double normSign = outgoing ? -1 : +1;
383 G4double distFrom, distOut2;
384
385 //
386 // We have two tries for each hemisphere. Try the closest first.
387 //
388 distFrom = normSign*DistanceAway( p, false, distOut2 );
389 if (distFrom > -0.5*kCarTolerance )
390 {
391 //
392 // Good answer
393 //
394 if (distOut2 > 0)
395 return std::sqrt( distFrom*distFrom + distOut2 );
396 else
397 return std::fabs(distFrom);
398 }
399
400 //
401 // Try second side.
402 //
403 distFrom = normSign*DistanceAway( p, true, distOut2 );
404 if (distFrom > -0.5*kCarTolerance)
405 {
406
407 if (distOut2 > 0)
408 return std::sqrt( distFrom*distFrom + distOut2 );
409 else
410 return std::fabs(distFrom);
411 }
412
413 return kInfinity;
414}
415
416
417//
418// Inside
419//
420EInside G4PolyconeSide::Inside( const G4ThreeVector &p,
421 G4double tolerance,
422 G4double *bestDistance )
423{
424 //
425 // Check both sides
426 //
427 G4double distFrom[2], distOut2[2], dist2[2];
428 G4double edgeRZnorm[2];
429
430 distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm );
431 distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 );
432
433 dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
434 dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
435
436 //
437 // Who's closest?
438 //
439 G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
440
441 *bestDistance = std::sqrt( dist2[i] );
442
443 //
444 // Okay then, inside or out?
445 //
446 if ( (std::fabs(edgeRZnorm[i]) < tolerance)
447 && (distOut2[i] < tolerance*tolerance) )
448 return kSurface;
449 else if (edgeRZnorm[i] < 0)
450 return kInside;
451 else
452 return kOutside;
453}
454
455
456//
457// Normal
458//
459G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p,
460 G4double *bestDistance )
461{
462 if (p == G4ThreeVector(0.,0.,0.)) { return p; }
463
464 G4ThreeVector dFrom;
465 G4double dOut2;
466
467 dFrom = DistanceAway( p, false, dOut2 );
468
469 *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
470
471 G4double rad = p.perp();
472 return G4ThreeVector( rNorm*p.x()/rad, rNorm*p.y()/rad, zNorm );
473}
474
475
476//
477// Extent
478//
479G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
480{
481 if (axis.perp2() < DBL_MIN)
482 {
483 //
484 // Special case
485 //
486 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
487 }
488
489 //
490 // Is the axis pointing inside our phi gap?
491 //
492 if (phiIsOpen)
493 {
494 G4double phi = axis.phi();
495 while( phi < startPhi ) phi += twopi;
496
497 if (phi > deltaPhi+startPhi)
498 {
499 //
500 // Yeah, looks so. Make four three vectors defining the phi
501 // opening
502 //
503 G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
504 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
505 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
506 cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
507 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
508 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
509
510 G4double ad = axis.dot(a),
511 bd = axis.dot(b),
512 cd = axis.dot(c),
513 dd = axis.dot(d);
514
515 if (bd > ad) ad = bd;
516 if (cd > ad) ad = cd;
517 if (dd > ad) ad = dd;
518
519 return ad;
520 }
521 }
522
523 //
524 // Check either end
525 //
526 G4double aPerp = axis.perp();
527
528 G4double a = aPerp*r[0] + axis.z()*z[0];
529 G4double b = aPerp*r[1] + axis.z()*z[1];
530
531 if (b > a) a = b;
532
533 return a;
534}
535
536
537
538//
539// CalculateExtent
540//
541// See notes in G4VCSGface
542//
543void G4PolyconeSide::CalculateExtent( const EAxis axis,
544 const G4VoxelLimits &voxelLimit,
545 const G4AffineTransform &transform,
546 G4SolidExtentList &extentList )
547{
548 G4ClippablePolygon polygon;
549
550 //
551 // Here we will approximate (ala G4Cons) and divide our conical section
552 // into segments, like G4Polyhedra. When doing so, the radius
553 // is extented far enough such that the segments always lie
554 // just outside the surface of the conical section we are
555 // approximating.
556 //
557
558 //
559 // Choose phi size of our segment(s) based on constants as
560 // defined in meshdefs.hh
561 //
562 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
563 if (numPhi < kMinMeshSections)
564 numPhi = kMinMeshSections;
565 else if (numPhi > kMaxMeshSections)
566 numPhi = kMaxMeshSections;
567
568 G4double sigPhi = deltaPhi/numPhi;
569
570 //
571 // Determine radius factor to keep segments outside
572 //
573 G4double rFudge = 1.0/std::cos(0.5*sigPhi);
574
575 //
576 // Decide which radius to use on each end of the side,
577 // and whether a transition mesh is required
578 //
579 // {r0,z0} - Beginning of this side
580 // {r1,z1} - Ending of this side
581 // {r2,z0} - Beginning of transition piece connecting previous
582 // side (and ends at beginning of this side)
583 //
584 // So, order is 2 --> 0 --> 1.
585 // -------
586 //
587 // r2 < 0 indicates that no transition piece is required
588 //
589 G4double r0, r1, r2, z0, z1;
590
591 r2 = -1; // By default: no transition piece
592
593 if (rNorm < -DBL_MIN)
594 {
595 //
596 // This side faces *inward*, and so our mesh has
597 // the same radius
598 //
599 r1 = r[1];
600 z1 = z[1];
601 z0 = z[0];
602 r0 = r[0];
603
604 r2 = -1;
605
606 if (prevZS > DBL_MIN)
607 {
608 //
609 // The previous side is facing outwards
610 //
611 if ( prevRS*zS - prevZS*rS > 0 )
612 {
613 //
614 // Transition was convex: build transition piece
615 //
616 if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
617 }
618 else
619 {
620 //
621 // Transition was concave: short this side
622 //
623 FindLineIntersect( z0, r0, zS, rS,
624 z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
625 }
626 }
627
628 if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
629 {
630 //
631 // The next side is facing outwards, forming a
632 // concave transition: short this side
633 //
634 FindLineIntersect( z1, r1, zS, rS,
635 z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
636 }
637 }
638 else if (rNorm > DBL_MIN)
639 {
640 //
641 // This side faces *outward* and is given a boost to
642 // it radius
643 //
644 r0 = r[0]*rFudge;
645 z0 = z[0];
646 r1 = r[1]*rFudge;
647 z1 = z[1];
648
649 if (prevZS < -DBL_MIN)
650 {
651 //
652 // The previous side is facing inwards
653 //
654 if ( prevRS*zS - prevZS*rS > 0 )
655 {
656 //
657 // Transition was convex: build transition piece
658 //
659 if (r[0] > DBL_MIN) r2 = r[0];
660 }
661 else
662 {
663 //
664 // Transition was concave: short this side
665 //
666 FindLineIntersect( z0, r0, zS, rS*rFudge,
667 z0, r[0], prevZS, prevRS, z0, r0 );
668 }
669 }
670
671 if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
672 {
673 //
674 // The next side is facing inwards, forming a
675 // concave transition: short this side
676 //
677 FindLineIntersect( z1, r1, zS, rS*rFudge,
678 z1, r[1], nextZS, nextRS, z1, r1 );
679 }
680 }
681 else
682 {
683 //
684 // This side is perpendicular to the z axis (is a disk)
685 //
686 // Whether or not r0 needs a rFudge factor depends
687 // on the normal of the previous edge. Similar with r1
688 // and the next edge. No transition piece is required.
689 //
690 r0 = r[0];
691 r1 = r[1];
692 z0 = z[0];
693 z1 = z[1];
694
695 if (prevZS > DBL_MIN) r0 *= rFudge;
696 if (nextZS > DBL_MIN) r1 *= rFudge;
697 }
698
699 //
700 // Loop
701 //
702 G4double phi = startPhi,
703 cosPhi = std::cos(phi),
704 sinPhi = std::sin(phi);
705
706 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
707 v1( r1*cosPhi, r1*sinPhi, z1 ),
708 v2, w0, w1, w2;
709 transform.ApplyPointTransform( v0 );
710 transform.ApplyPointTransform( v1 );
711
712 if (r2 >= 0)
713 {
714 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
715 transform.ApplyPointTransform( v2 );
716 }
717
718 do
719 {
720 phi += sigPhi;
721 if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff
722 cosPhi = std::cos(phi),
723 sinPhi = std::sin(phi);
724
725 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
726 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
727 transform.ApplyPointTransform( w0 );
728 transform.ApplyPointTransform( w1 );
729
730 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
731
732 //
733 // Build polygon, taking special care to keep the vertices
734 // in order
735 //
736 polygon.ClearAllVertices();
737
738 polygon.AddVertexInOrder( v0 );
739 polygon.AddVertexInOrder( v1 );
740 polygon.AddVertexInOrder( w1 );
741 polygon.AddVertexInOrder( w0 );
742
743 //
744 // Get extent
745 //
746 if (polygon.PartialClip( voxelLimit, axis ))
747 {
748 //
749 // Get dot product of normal with target axis
750 //
751 polygon.SetNormal( deltaV.cross(v1-v0).unit() );
752
753 extentList.AddSurface( polygon );
754 }
755
756 if (r2 >= 0)
757 {
758 //
759 // Repeat, for transition piece
760 //
761 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
762 transform.ApplyPointTransform( w2 );
763
764 polygon.ClearAllVertices();
765
766 polygon.AddVertexInOrder( v2 );
767 polygon.AddVertexInOrder( v0 );
768 polygon.AddVertexInOrder( w0 );
769 polygon.AddVertexInOrder( w2 );
770
771 if (polygon.PartialClip( voxelLimit, axis ))
772 {
773 polygon.SetNormal( deltaV.cross(v0-v2).unit() );
774
775 extentList.AddSurface( polygon );
776 }
777
778 v2 = w2;
779 }
780
781 //
782 // Next vertex
783 //
784 v0 = w0;
785 v1 = w1;
786 } while( --numPhi > 0 );
787
788 //
789 // We are almost done. But, it is important that we leave no
790 // gaps in the surface of our solid. By using rFudge, however,
791 // we've done exactly that, if we have a phi segment.
792 // Add two additional faces if necessary
793 //
794 if (phiIsOpen && rNorm > DBL_MIN)
795 {
796 G4double cosPhi = std::cos(startPhi),
797 sinPhi = std::sin(startPhi);
798
799 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
800 a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
801 b0( r0*cosPhi, r0*sinPhi, z[0] ),
802 b1( r1*cosPhi, r1*sinPhi, z[1] );
803
804 transform.ApplyPointTransform( a0 );
805 transform.ApplyPointTransform( a1 );
806 transform.ApplyPointTransform( b0 );
807 transform.ApplyPointTransform( b1 );
808
809 polygon.ClearAllVertices();
810
811 polygon.AddVertexInOrder( a0 );
812 polygon.AddVertexInOrder( a1 );
813 polygon.AddVertexInOrder( b0 );
814 polygon.AddVertexInOrder( b1 );
815
816 if (polygon.PartialClip( voxelLimit , axis))
817 {
818 G4ThreeVector normal( sinPhi, -cosPhi, 0 );
819 polygon.SetNormal( transform.TransformAxis( normal ) );
820
821 extentList.AddSurface( polygon );
822 }
823
824 cosPhi = std::cos(startPhi+deltaPhi);
825 sinPhi = std::sin(startPhi+deltaPhi);
826
827 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
828 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
829 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
830 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
831 transform.ApplyPointTransform( a0 );
832 transform.ApplyPointTransform( a1 );
833 transform.ApplyPointTransform( b0 );
834 transform.ApplyPointTransform( b1 );
835
836 polygon.ClearAllVertices();
837
838 polygon.AddVertexInOrder( a0 );
839 polygon.AddVertexInOrder( a1 );
840 polygon.AddVertexInOrder( b0 );
841 polygon.AddVertexInOrder( b1 );
842
843 if (polygon.PartialClip( voxelLimit, axis ))
844 {
845 G4ThreeVector normal( -sinPhi, cosPhi, 0 );
846 polygon.SetNormal( transform.TransformAxis( normal ) );
847
848 extentList.AddSurface( polygon );
849 }
850 }
851
852 return;
853}
854
855
856//
857// DistanceAway
858//
859// Calculate distance of a point from our conical surface, including the effect
860// of any phi segmentation
861//
862// Arguments:
863// p - (in) Point to check
864// opposite - (in) If true, check opposite hemisphere (see below)
865// distOutside - (out) Additional distance outside the edges of the surface
866// edgeRZnorm - (out) if negative, point is inside
867//
868// return value = distance from the conical plane, if extrapolated beyond edges,
869// signed by whether the point is in inside or outside the shape
870//
871// Notes:
872// * There are two answers, depending on which hemisphere is considered.
873//
874G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p,
875 G4bool opposite,
876 G4double &distOutside2,
877 G4double *edgeRZnorm )
878{
879 //
880 // Convert our point to r and z
881 //
882 G4double rx = p.perp(), zx = p.z();
883
884 //
885 // Change sign of r if opposite says we should
886 //
887 if (opposite) rx = -rx;
888
889 //
890 // Calculate return value
891 //
892 G4double deltaR = rx - r[0], deltaZ = zx - z[0];
893 G4double answer = deltaR*rNorm + deltaZ*zNorm;
894
895 //
896 // Are we off the surface in r,z space?
897 //
898 G4double s = deltaR*rS + deltaZ*zS;
899 if (s < 0)
900 {
901 distOutside2 = s*s;
902 if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
903 }
904 else if (s > length)
905 {
906 distOutside2 = sqr( s-length );
907 if (edgeRZnorm)
908 {
909 G4double deltaR = rx - r[1], deltaZ = zx - z[1];
910 *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
911 }
912 }
913 else
914 {
915 distOutside2 = 0;
916 if (edgeRZnorm) *edgeRZnorm = answer;
917 }
918
919 if (phiIsOpen)
920 {
921 //
922 // Finally, check phi
923 //
924 G4double phi = p.phi();
925 while( phi < startPhi ) phi += twopi;
926
927 if (phi > startPhi+deltaPhi)
928 {
929 //
930 // Oops. Are we closer to the start phi or end phi?
931 //
932 G4double d1 = phi-startPhi-deltaPhi;
933 while( phi > startPhi ) phi -= twopi;
934 G4double d2 = startPhi-phi;
935
936 if (d2 < d1) d1 = d2;
937
938 //
939 // Add result to our distance
940 //
941 G4double dist = d1*rx;
942
943 distOutside2 += dist*dist;
944 if (edgeRZnorm)
945 {
946 *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
947 }
948 }
949 }
950
951 return answer;
952}
953
954
955//
956// PointOnCone
957//
958// Decide if a point is on a cone and return normal if it is
959//
960G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit,
961 G4double normSign,
962 const G4ThreeVector &p,
963 const G4ThreeVector &v,
964 G4ThreeVector &normal )
965{
966 G4double rx = hit.perp();
967 //
968 // Check radial/z extent, as appropriate
969 //
970 if (!cone->HitOn( rx, hit.z() )) return false;
971
972 if (phiIsOpen)
973 {
974 G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
975 //
976 // Check phi segment. Here we have to be careful
977 // to use the standard method consistent with
978 // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
979 //
980 G4double phi = hit.phi();
981 while( phi < startPhi-phiTolerant ) phi += twopi;
982
983 if (phi > startPhi+deltaPhi+phiTolerant) return false;
984
985 if (phi > startPhi+deltaPhi-phiTolerant)
986 {
987 //
988 // Exact treatment
989 //
990 G4ThreeVector qx = p + v;
991 G4ThreeVector qa = qx - corners[2],
992 qb = qx - corners[3];
993 G4ThreeVector qacb = qa.cross(qb);
994
995 if (normSign*qacb.dot(v) < 0) return false;
996 }
997 else if (phi < phiTolerant)
998 {
999 G4ThreeVector qx = p + v;
1000 G4ThreeVector qa = qx - corners[1],
1001 qb = qx - corners[0];
1002 G4ThreeVector qacb = qa.cross(qb);
1003
1004 if (normSign*qacb.dot(v) < 0) return false;
1005 }
1006 }
1007
1008 //
1009 // We have a good hit! Calculate normal
1010 //
1011 if (rx < DBL_MIN)
1012 normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1013 else
1014 normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1015 return true;
1016}
1017
1018
1019//
1020// FindLineIntersect
1021//
1022// Decide the point at which two 2-dimensional lines intersect
1023//
1024// Equation of line: x = x1 + s*tx1
1025// y = y1 + s*ty1
1026//
1027// It is assumed that the lines are *not* parallel
1028//
1029void G4PolyconeSide::FindLineIntersect( G4double x1, G4double y1,
1030 G4double tx1, G4double ty1,
1031 G4double x2, G4double y2,
1032 G4double tx2, G4double ty2,
1033 G4double &x, G4double &y )
1034{
1035 //
1036 // The solution is a simple linear equation
1037 //
1038 G4double deter = tx1*ty2 - tx2*ty1;
1039
1040 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1041 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1042
1043 //
1044 // We want the answer to not depend on which order the
1045 // lines were specified. Take average.
1046 //
1047 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1048 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1049}
1050
1051//
1052// Calculate surface area for GetPointOnSurface()
1053//
1054G4double G4PolyconeSide::SurfaceArea()
1055{
1056 if(fSurfaceArea==0)
1057 {
1058 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1059 fSurfaceArea *= 0.5*(deltaPhi);
1060 }
1061 return fSurfaceArea;
1062}
1063
1064//
1065// GetPointOnFace
1066//
1067G4ThreeVector G4PolyconeSide::GetPointOnFace()
1068{
1069 G4double x,y,zz;
1070 G4double rr,phi,dz,dr;
1071 dr=r[1]-r[0];dz=z[1]-z[0];
1072 phi=startPhi+deltaPhi*G4UniformRand();
1073 rr=r[0]+dr*G4UniformRand();
1074
1075 x=rr*std::cos(phi);
1076 y=rr*std::sin(phi);
1077
1078 // PolyconeSide has a Ring Form
1079 //
1080 if (dz==0.)
1081 {
1082 zz=z[0];
1083 }
1084 else
1085 {
1086 if(dr==0.) // PolyconeSide has a Tube Form
1087 {
1088 zz = z[0]+dz*G4UniformRand();
1089 }
1090 else
1091 {
1092 zz = z[0]+(rr-r[0])*dz/dr;
1093 }
1094 }
1095
1096 return G4ThreeVector(x,y,zz);
1097}
Note: See TracBrowser for help on using the repository browser.