| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4PolyhedraSide.cc,v 1.15 2008/05/15 11:41:59 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | // --------------------------------------------------------------------
|
|---|
| 32 | // GEANT 4 class source file
|
|---|
| 33 | //
|
|---|
| 34 | //
|
|---|
| 35 | // G4PolyhedraSide.cc
|
|---|
| 36 | //
|
|---|
| 37 | // Implementation of the face representing one segmented side of a Polyhedra
|
|---|
| 38 | //
|
|---|
| 39 | // --------------------------------------------------------------------
|
|---|
| 40 |
|
|---|
| 41 | #include "G4PolyhedraSide.hh"
|
|---|
| 42 | #include "G4IntersectingCone.hh"
|
|---|
| 43 | #include "G4ClippablePolygon.hh"
|
|---|
| 44 | #include "G4AffineTransform.hh"
|
|---|
| 45 | #include "G4SolidExtentList.hh"
|
|---|
| 46 | #include "G4GeometryTolerance.hh"
|
|---|
| 47 |
|
|---|
| 48 | #include "Randomize.hh"
|
|---|
| 49 |
|
|---|
| 50 | //
|
|---|
| 51 | // Constructor
|
|---|
| 52 | //
|
|---|
| 53 | // Values for r1,z1 and r2,z2 should be specified in clockwise
|
|---|
| 54 | // order in (r,z).
|
|---|
| 55 | //
|
|---|
| 56 | G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ,
|
|---|
| 57 | const G4PolyhedraSideRZ *tail,
|
|---|
| 58 | const G4PolyhedraSideRZ *head,
|
|---|
| 59 | const G4PolyhedraSideRZ *nextRZ,
|
|---|
| 60 | G4int theNumSide,
|
|---|
| 61 | G4double thePhiStart,
|
|---|
| 62 | G4double thePhiTotal,
|
|---|
| 63 | G4bool thePhiIsOpen,
|
|---|
| 64 | G4bool isAllBehind )
|
|---|
| 65 | {
|
|---|
| 66 |
|
|---|
| 67 | kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
|
|---|
| 68 | fSurfaceArea=0.;
|
|---|
| 69 | //
|
|---|
| 70 | // Record values
|
|---|
| 71 | //
|
|---|
| 72 | r[0] = tail->r; z[0] = tail->z;
|
|---|
| 73 | r[1] = head->r; z[1] = head->z;
|
|---|
| 74 |
|
|---|
| 75 | G4double phiTotal;
|
|---|
| 76 |
|
|---|
| 77 | //
|
|---|
| 78 | // Set phi to our convention
|
|---|
| 79 | //
|
|---|
| 80 | startPhi = thePhiStart;
|
|---|
| 81 | while (startPhi < 0.0) startPhi += twopi;
|
|---|
| 82 |
|
|---|
| 83 | phiIsOpen = thePhiIsOpen;
|
|---|
| 84 | phiTotal = (phiIsOpen) ? thePhiTotal : twopi;
|
|---|
| 85 |
|
|---|
| 86 | allBehind = isAllBehind;
|
|---|
| 87 |
|
|---|
| 88 | //
|
|---|
| 89 | // Make our intersecting cone
|
|---|
| 90 | //
|
|---|
| 91 | cone = new G4IntersectingCone( r, z );
|
|---|
| 92 |
|
|---|
| 93 | //
|
|---|
| 94 | // Construct side plane vector set
|
|---|
| 95 | //
|
|---|
| 96 | numSide = theNumSide;
|
|---|
| 97 | deltaPhi = phiTotal/theNumSide;
|
|---|
| 98 | endPhi = startPhi+phiTotal;
|
|---|
| 99 |
|
|---|
| 100 | vecs = new G4PolyhedraSideVec[numSide];
|
|---|
| 101 |
|
|---|
| 102 | edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide];
|
|---|
| 103 |
|
|---|
| 104 | //
|
|---|
| 105 | // ...this is where we start
|
|---|
| 106 | //
|
|---|
| 107 | G4double phi = startPhi;
|
|---|
| 108 | G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ),
|
|---|
| 109 | b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ),
|
|---|
| 110 | c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ),
|
|---|
| 111 | d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ),
|
|---|
| 112 | a2, b2, c2, d2;
|
|---|
| 113 | G4PolyhedraSideEdge *edge = edges;
|
|---|
| 114 |
|
|---|
| 115 | G4PolyhedraSideVec *vec = vecs;
|
|---|
| 116 | do
|
|---|
| 117 | {
|
|---|
| 118 | //
|
|---|
| 119 | // ...this is where we are going
|
|---|
| 120 | //
|
|---|
| 121 | phi += deltaPhi;
|
|---|
| 122 | a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] );
|
|---|
| 123 | b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] );
|
|---|
| 124 | c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z );
|
|---|
| 125 | d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z );
|
|---|
| 126 |
|
|---|
| 127 | G4ThreeVector tt;
|
|---|
| 128 |
|
|---|
| 129 | //
|
|---|
| 130 | // ...build some relevant vectors.
|
|---|
| 131 | // the point is to sacrifice a little memory with precalcs
|
|---|
| 132 | // to gain speed
|
|---|
| 133 | //
|
|---|
| 134 | vec->center = 0.25*( a1 + a2 + b1 + b2 );
|
|---|
| 135 |
|
|---|
| 136 | tt = b2 + b1 - a2 - a1;
|
|---|
| 137 | vec->surfRZ = tt.unit();
|
|---|
| 138 | if (vec==vecs) lenRZ = 0.25*tt.mag();
|
|---|
| 139 |
|
|---|
| 140 | tt = b2 - b1 + a2 - a1;
|
|---|
| 141 | vec->surfPhi = tt.unit();
|
|---|
| 142 | if (vec==vecs)
|
|---|
| 143 | {
|
|---|
| 144 | lenPhi[0] = 0.25*tt.mag();
|
|---|
| 145 | tt = b2 - b1;
|
|---|
| 146 | lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ;
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | tt = vec->surfPhi.cross(vec->surfRZ);
|
|---|
| 150 | vec->normal = tt.unit();
|
|---|
| 151 |
|
|---|
| 152 | //
|
|---|
| 153 | // ...edge normals are the average of the normals of
|
|---|
| 154 | // the two faces they connect.
|
|---|
| 155 | //
|
|---|
| 156 | // ...edge normals are necessary if we are to accurately
|
|---|
| 157 | // decide if a point is "inside" a face. For non-convex
|
|---|
| 158 | // shapes, it is absolutely necessary to know information
|
|---|
| 159 | // on adjacent faces to accurate determine this.
|
|---|
| 160 | //
|
|---|
| 161 | // ...we don't need them for the phi edges, since that
|
|---|
| 162 | // information is taken care of internally. The r/z edges,
|
|---|
| 163 | // however, depend on the adjacent G4PolyhedraSide.
|
|---|
| 164 | //
|
|---|
| 165 | G4ThreeVector a12, adj;
|
|---|
| 166 |
|
|---|
| 167 | a12 = a2-a1;
|
|---|
| 168 |
|
|---|
| 169 | adj = 0.5*(c1+c2-a1-a2);
|
|---|
| 170 | adj = adj.cross(a12);
|
|---|
| 171 | adj = adj.unit() + vec->normal;
|
|---|
| 172 | vec->edgeNorm[0] = adj.unit();
|
|---|
| 173 |
|
|---|
| 174 | a12 = b1-b2;
|
|---|
| 175 | adj = 0.5*(d1+d2-b1-b2);
|
|---|
| 176 | adj = adj.cross(a12);
|
|---|
| 177 | adj = adj.unit() + vec->normal;
|
|---|
| 178 | vec->edgeNorm[1] = adj.unit();
|
|---|
| 179 |
|
|---|
| 180 | //
|
|---|
| 181 | // ...the corners are crucial. It is important that
|
|---|
| 182 | // they are calculated consistently for adjacent
|
|---|
| 183 | // G4PolyhedraSides, to avoid gaps caused by roundoff.
|
|---|
| 184 | //
|
|---|
| 185 | vec->edges[0] = edge;
|
|---|
| 186 | edge->corner[0] = a1;
|
|---|
| 187 | edge->corner[1] = b1;
|
|---|
| 188 | edge++;
|
|---|
| 189 | vec->edges[1] = edge;
|
|---|
| 190 |
|
|---|
| 191 | a1 = a2;
|
|---|
| 192 | b1 = b2;
|
|---|
| 193 | c1 = c2;
|
|---|
| 194 | d1 = d2;
|
|---|
| 195 | } while( ++vec < vecs+numSide );
|
|---|
| 196 |
|
|---|
| 197 | //
|
|---|
| 198 | // Clean up hanging edge
|
|---|
| 199 | //
|
|---|
| 200 | if (phiIsOpen)
|
|---|
| 201 | {
|
|---|
| 202 | edge->corner[0] = a2;
|
|---|
| 203 | edge->corner[1] = b2;
|
|---|
| 204 | }
|
|---|
| 205 | else
|
|---|
| 206 | {
|
|---|
| 207 | vecs[numSide-1].edges[1] = edges;
|
|---|
| 208 | }
|
|---|
| 209 |
|
|---|
| 210 | //
|
|---|
| 211 | // Go back and fill in remaining fields in edges
|
|---|
| 212 | //
|
|---|
| 213 | vec = vecs;
|
|---|
| 214 | G4PolyhedraSideVec *prev = vecs+numSide-1;
|
|---|
| 215 | do
|
|---|
| 216 | {
|
|---|
| 217 | edge = vec->edges[0]; // The edge between prev and vec
|
|---|
| 218 |
|
|---|
| 219 | //
|
|---|
| 220 | // Okay: edge normal is average of normals of adjacent faces
|
|---|
| 221 | //
|
|---|
| 222 | G4ThreeVector eNorm = vec->normal + prev->normal;
|
|---|
| 223 | edge->normal = eNorm.unit();
|
|---|
| 224 |
|
|---|
| 225 | //
|
|---|
| 226 | // Vertex normal is average of norms of adjacent surfaces (all four)
|
|---|
| 227 | // However, vec->edgeNorm is unit vector in some direction
|
|---|
| 228 | // as the sum of normals of adjacent PolyhedraSide with vec.
|
|---|
| 229 | // The normalization used for this vector should be the same
|
|---|
| 230 | // for vec and prev.
|
|---|
| 231 | //
|
|---|
| 232 | eNorm = vec->edgeNorm[0] + prev->edgeNorm[0];
|
|---|
| 233 | edge->cornNorm[0] = eNorm.unit();
|
|---|
| 234 |
|
|---|
| 235 | eNorm = vec->edgeNorm[1] + prev->edgeNorm[1];
|
|---|
| 236 | edge->cornNorm[1] = eNorm.unit();
|
|---|
| 237 | } while( prev=vec, ++vec < vecs + numSide );
|
|---|
| 238 |
|
|---|
| 239 | if (phiIsOpen)
|
|---|
| 240 | {
|
|---|
| 241 | // G4double rFact = std::cos(0.5*deltaPhi);
|
|---|
| 242 | //
|
|---|
| 243 | // If phi is open, we need to patch up normals of the
|
|---|
| 244 | // first and last edges and their corresponding
|
|---|
| 245 | // vertices.
|
|---|
| 246 | //
|
|---|
| 247 | // We use vectors that are in the plane of the
|
|---|
| 248 | // face. This should be safe.
|
|---|
| 249 | //
|
|---|
| 250 | vec = vecs;
|
|---|
| 251 |
|
|---|
| 252 | G4ThreeVector normvec = vec->edges[0]->corner[0]
|
|---|
| 253 | - vec->edges[0]->corner[1];
|
|---|
| 254 | normvec = normvec.cross(vec->normal);
|
|---|
| 255 | if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec;
|
|---|
| 256 |
|
|---|
| 257 | vec->edges[0]->normal = normvec.unit();
|
|---|
| 258 |
|
|---|
| 259 | vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0]
|
|---|
| 260 | - vec->center).unit();
|
|---|
| 261 | vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1]
|
|---|
| 262 | - vec->center).unit();
|
|---|
| 263 |
|
|---|
| 264 | //
|
|---|
| 265 | // Repeat for ending phi
|
|---|
| 266 | //
|
|---|
| 267 | vec = vecs + numSide - 1;
|
|---|
| 268 |
|
|---|
| 269 | normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1];
|
|---|
| 270 | normvec = normvec.cross(vec->normal);
|
|---|
| 271 | if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec;
|
|---|
| 272 |
|
|---|
| 273 | vec->edges[1]->normal = normvec.unit();
|
|---|
| 274 |
|
|---|
| 275 | vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0]
|
|---|
| 276 | - vec->center).unit();
|
|---|
| 277 | vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1]
|
|---|
| 278 | - vec->center).unit();
|
|---|
| 279 | }
|
|---|
| 280 |
|
|---|
| 281 | //
|
|---|
| 282 | // edgeNorm is the factor one multiplies the distance along vector phi
|
|---|
| 283 | // on the surface of one of our sides in order to calculate the distance
|
|---|
| 284 | // from the edge. (see routine DistanceAway)
|
|---|
| 285 | //
|
|---|
| 286 | edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] );
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 |
|
|---|
| 290 | //
|
|---|
| 291 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 292 | // for usage restricted to object persistency.
|
|---|
| 293 | //
|
|---|
| 294 | G4PolyhedraSide::G4PolyhedraSide( __void__&)
|
|---|
| 295 | : cone(0), vecs(0), edges(0)
|
|---|
| 296 | {
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 |
|
|---|
| 300 | //
|
|---|
| 301 | // Destructor
|
|---|
| 302 | //
|
|---|
| 303 | G4PolyhedraSide::~G4PolyhedraSide()
|
|---|
| 304 | {
|
|---|
| 305 | delete cone;
|
|---|
| 306 | delete [] vecs;
|
|---|
| 307 | delete [] edges;
|
|---|
| 308 | }
|
|---|
| 309 |
|
|---|
| 310 |
|
|---|
| 311 | //
|
|---|
| 312 | // Copy constructor
|
|---|
| 313 | //
|
|---|
| 314 | G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source )
|
|---|
| 315 | : G4VCSGface()
|
|---|
| 316 | {
|
|---|
| 317 | CopyStuff( source );
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 |
|
|---|
| 321 | //
|
|---|
| 322 | // Assignment operator
|
|---|
| 323 | //
|
|---|
| 324 | G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source )
|
|---|
| 325 | {
|
|---|
| 326 | if (this == &source) return *this;
|
|---|
| 327 |
|
|---|
| 328 | delete cone;
|
|---|
| 329 | delete [] vecs;
|
|---|
| 330 | delete [] edges;
|
|---|
| 331 |
|
|---|
| 332 | CopyStuff( source );
|
|---|
| 333 |
|
|---|
| 334 | return *this;
|
|---|
| 335 | }
|
|---|
| 336 |
|
|---|
| 337 |
|
|---|
| 338 | //
|
|---|
| 339 | // CopyStuff
|
|---|
| 340 | //
|
|---|
| 341 | void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source )
|
|---|
| 342 | {
|
|---|
| 343 | //
|
|---|
| 344 | // The simple stuff
|
|---|
| 345 | //
|
|---|
| 346 | numSide = source.numSide;
|
|---|
| 347 | r[0] = source.r[0];
|
|---|
| 348 | r[1] = source.r[1];
|
|---|
| 349 | z[0] = source.z[0];
|
|---|
| 350 | z[1] = source.z[1];
|
|---|
| 351 | startPhi = source.startPhi;
|
|---|
| 352 | deltaPhi = source.deltaPhi;
|
|---|
| 353 | endPhi = source.endPhi;
|
|---|
| 354 | phiIsOpen = source.phiIsOpen;
|
|---|
| 355 | allBehind = source.allBehind;
|
|---|
| 356 |
|
|---|
| 357 | lenRZ = source.lenRZ;
|
|---|
| 358 | lenPhi[0] = source.lenPhi[0];
|
|---|
| 359 | lenPhi[1] = source.lenPhi[1];
|
|---|
| 360 | edgeNorm = source.edgeNorm;
|
|---|
| 361 |
|
|---|
| 362 | kCarTolerance = source.kCarTolerance;
|
|---|
| 363 | fSurfaceArea = source.fSurfaceArea;
|
|---|
| 364 |
|
|---|
| 365 | cone = new G4IntersectingCone( *source.cone );
|
|---|
| 366 |
|
|---|
| 367 | //
|
|---|
| 368 | // Duplicate edges
|
|---|
| 369 | //
|
|---|
| 370 | G4int numEdges = phiIsOpen ? numSide+1 : numSide;
|
|---|
| 371 | edges = new G4PolyhedraSideEdge[numEdges];
|
|---|
| 372 |
|
|---|
| 373 | G4PolyhedraSideEdge *edge = edges,
|
|---|
| 374 | *sourceEdge = source.edges;
|
|---|
| 375 | do
|
|---|
| 376 | {
|
|---|
| 377 | *edge = *sourceEdge;
|
|---|
| 378 | } while( ++sourceEdge, ++edge < edges + numEdges);
|
|---|
| 379 |
|
|---|
| 380 | //
|
|---|
| 381 | // Duplicate vecs
|
|---|
| 382 | //
|
|---|
| 383 | vecs = new G4PolyhedraSideVec[numSide];
|
|---|
| 384 |
|
|---|
| 385 | G4PolyhedraSideVec *vec = vecs,
|
|---|
| 386 | *sourceVec = source.vecs;
|
|---|
| 387 | do
|
|---|
| 388 | {
|
|---|
| 389 | *vec = *sourceVec;
|
|---|
| 390 | vec->edges[0] = edges + (sourceVec->edges[0] - source.edges);
|
|---|
| 391 | vec->edges[1] = edges + (sourceVec->edges[1] - source.edges);
|
|---|
| 392 | } while( ++sourceVec, ++vec < vecs + numSide );
|
|---|
| 393 | }
|
|---|
| 394 |
|
|---|
| 395 |
|
|---|
| 396 | //
|
|---|
| 397 | // Intersect
|
|---|
| 398 | //
|
|---|
| 399 | // Decide if a line intersects the face.
|
|---|
| 400 | //
|
|---|
| 401 | // Arguments:
|
|---|
| 402 | // p = (in) starting point of line segment
|
|---|
| 403 | // v = (in) direction of line segment (assumed a unit vector)
|
|---|
| 404 | // A, B = (in) 2d transform variables (see note top of file)
|
|---|
| 405 | // normSign = (in) desired sign for dot product with normal (see below)
|
|---|
| 406 | // surfTolerance = (in) minimum distance from the surface
|
|---|
| 407 | // vecs = (in) Vector set array
|
|---|
| 408 | // distance = (out) distance to surface furfilling all requirements
|
|---|
| 409 | // distFromSurface = (out) distance from the surface
|
|---|
| 410 | // thisNormal = (out) normal vector of the intersecting surface
|
|---|
| 411 | //
|
|---|
| 412 | // Return value:
|
|---|
| 413 | // true if an intersection is found. Otherwise, output parameters are
|
|---|
| 414 | // undefined.
|
|---|
| 415 | //
|
|---|
| 416 | // Notes:
|
|---|
| 417 | // * normSign: if we are "inside" the shape and only want to find out how far
|
|---|
| 418 | // to leave the shape, we only want to consider intersections with surfaces in
|
|---|
| 419 | // which the trajectory is leaving the shape. Since the normal vectors to the
|
|---|
| 420 | // surface always point outwards from the inside, this means we want the dot
|
|---|
| 421 | // product of the trajectory direction v and the normal of the side normals[i]
|
|---|
| 422 | // to be positive. Thus, we should specify normSign as +1.0. Otherwise, if
|
|---|
| 423 | // we are outside and want to go in, normSign should be set to -1.0.
|
|---|
| 424 | // Don't set normSign to zero, or you will get no intersections!
|
|---|
| 425 | //
|
|---|
| 426 | // * surfTolerance: see notes on argument "surfTolerance" in routine
|
|---|
| 427 | // "IntersectSidePlane".
|
|---|
| 428 | // ----HOWEVER---- We should *not* apply this surface tolerance if the
|
|---|
| 429 | // starting point is not within phi or z of the surface. Specifically,
|
|---|
| 430 | // if the starting point p angle in x/y places it on a separate side from the
|
|---|
| 431 | // intersection or if the starting point p is outside the z bounds of the
|
|---|
| 432 | // segment, surfTolerance must be ignored or we should *always* accept the
|
|---|
| 433 | // intersection!
|
|---|
| 434 | // This is simply because the sides do not have infinite extent.
|
|---|
| 435 | //
|
|---|
| 436 | //
|
|---|
| 437 | G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p,
|
|---|
| 438 | const G4ThreeVector &v,
|
|---|
| 439 | G4bool outgoing,
|
|---|
| 440 | G4double surfTolerance,
|
|---|
| 441 | G4double &distance,
|
|---|
| 442 | G4double &distFromSurface,
|
|---|
| 443 | G4ThreeVector &normal,
|
|---|
| 444 | G4bool &isAllBehind )
|
|---|
| 445 | {
|
|---|
| 446 | G4double normSign = outgoing ? +1 : -1;
|
|---|
| 447 |
|
|---|
| 448 | //
|
|---|
| 449 | // ------------------TO BE IMPLEMENTED---------------------
|
|---|
| 450 | // Testing the intersection of individual phi faces is
|
|---|
| 451 | // pretty straight forward. The simple thing therefore is to
|
|---|
| 452 | // form a loop and check them all in sequence.
|
|---|
| 453 | //
|
|---|
| 454 | // But, I worry about one day someone making
|
|---|
| 455 | // a polygon with a thousands sides. A linear search
|
|---|
| 456 | // would not be ideal in such a case.
|
|---|
| 457 | //
|
|---|
| 458 | // So, it would be nice to be able to quickly decide
|
|---|
| 459 | // which face would be intersected. One can make a very
|
|---|
| 460 | // good guess by using the intersection with a cone.
|
|---|
| 461 | // However, this is only reliable in 99% of the cases.
|
|---|
| 462 | //
|
|---|
| 463 | // My solution: make a decent guess as to the one or
|
|---|
| 464 | // two potential faces might get intersected, and then
|
|---|
| 465 | // test them. If we have the wrong face, use the test
|
|---|
| 466 | // to make a better guess.
|
|---|
| 467 | //
|
|---|
| 468 | // Since we might have two guesses, form a queue of
|
|---|
| 469 | // potential intersecting faces. Keep an array of
|
|---|
| 470 | // already tested faces to avoid doing one more than
|
|---|
| 471 | // once.
|
|---|
| 472 | //
|
|---|
| 473 | // Result: at worst, an iterative search. On average,
|
|---|
| 474 | // a little more than two tests would be required.
|
|---|
| 475 | //
|
|---|
| 476 | G4ThreeVector q = p + v;
|
|---|
| 477 |
|
|---|
| 478 | G4int face = 0;
|
|---|
| 479 | G4PolyhedraSideVec *vec = vecs;
|
|---|
| 480 | do
|
|---|
| 481 | {
|
|---|
| 482 | //
|
|---|
| 483 | // Correct normal?
|
|---|
| 484 | //
|
|---|
| 485 | G4double dotProd = normSign*v.dot(vec->normal);
|
|---|
| 486 | if (dotProd <= 0) continue;
|
|---|
| 487 |
|
|---|
| 488 | //
|
|---|
| 489 | // Is this face in front of the point along the trajectory?
|
|---|
| 490 | //
|
|---|
| 491 | G4ThreeVector delta = p - vec->center;
|
|---|
| 492 | distFromSurface = -normSign*delta.dot(vec->normal);
|
|---|
| 493 |
|
|---|
| 494 | if (distFromSurface < -surfTolerance) continue;
|
|---|
| 495 |
|
|---|
| 496 | //
|
|---|
| 497 | // phi
|
|---|
| 498 | // c -------- d ^
|
|---|
| 499 | // | | |
|
|---|
| 500 | // a -------- b +---> r/z
|
|---|
| 501 | //
|
|---|
| 502 | //
|
|---|
| 503 | // Do we remain on this particular segment?
|
|---|
| 504 | //
|
|---|
| 505 | G4ThreeVector qc = q - vec->edges[1]->corner[0];
|
|---|
| 506 | G4ThreeVector qd = q - vec->edges[1]->corner[1];
|
|---|
| 507 |
|
|---|
| 508 | if (normSign*qc.cross(qd).dot(v) < 0) continue;
|
|---|
| 509 |
|
|---|
| 510 | G4ThreeVector qa = q - vec->edges[0]->corner[0];
|
|---|
| 511 | G4ThreeVector qb = q - vec->edges[0]->corner[1];
|
|---|
| 512 |
|
|---|
| 513 | if (normSign*qa.cross(qb).dot(v) > 0) continue;
|
|---|
| 514 |
|
|---|
| 515 | //
|
|---|
| 516 | // We found the one and only segment we might be intersecting.
|
|---|
| 517 | // Do we remain within r/z bounds?
|
|---|
| 518 | //
|
|---|
| 519 |
|
|---|
| 520 | if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false;
|
|---|
| 521 | if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false;
|
|---|
| 522 |
|
|---|
| 523 | //
|
|---|
| 524 | // We allow the face to be slightly behind the trajectory
|
|---|
| 525 | // (surface tolerance) only if the point p is within
|
|---|
| 526 | // the vicinity of the face
|
|---|
| 527 | //
|
|---|
| 528 | if (distFromSurface < 0)
|
|---|
| 529 | {
|
|---|
| 530 | G4ThreeVector ps = p - vec->center;
|
|---|
| 531 |
|
|---|
| 532 | G4double rz = ps.dot(vec->surfRZ);
|
|---|
| 533 | if (std::fabs(rz) > lenRZ+surfTolerance) return false;
|
|---|
| 534 |
|
|---|
| 535 | G4double pp = ps.dot(vec->surfPhi);
|
|---|
| 536 | if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false;
|
|---|
| 537 | }
|
|---|
| 538 |
|
|---|
| 539 |
|
|---|
| 540 | //
|
|---|
| 541 | // Intersection found. Return answer.
|
|---|
| 542 | //
|
|---|
| 543 | distance = distFromSurface/dotProd;
|
|---|
| 544 | normal = vec->normal;
|
|---|
| 545 | isAllBehind = allBehind;
|
|---|
| 546 | return true;
|
|---|
| 547 | } while( ++vec, ++face < numSide );
|
|---|
| 548 |
|
|---|
| 549 | //
|
|---|
| 550 | // Oh well. Better luck next time.
|
|---|
| 551 | //
|
|---|
| 552 | return false;
|
|---|
| 553 | }
|
|---|
| 554 |
|
|---|
| 555 |
|
|---|
| 556 | G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing )
|
|---|
| 557 | {
|
|---|
| 558 | G4double normSign = outgoing ? -1 : +1;
|
|---|
| 559 |
|
|---|
| 560 | //
|
|---|
| 561 | // Try the closest phi segment first
|
|---|
| 562 | //
|
|---|
| 563 | G4int iPhi = ClosestPhiSegment( p.phi() );
|
|---|
| 564 |
|
|---|
| 565 | G4ThreeVector pdotc = p - vecs[iPhi].center;
|
|---|
| 566 | G4double normDist = pdotc.dot(vecs[iPhi].normal);
|
|---|
| 567 |
|
|---|
| 568 | if (normSign*normDist > -0.5*kCarTolerance)
|
|---|
| 569 | {
|
|---|
| 570 | return DistanceAway( p, vecs[iPhi], &normDist );
|
|---|
| 571 | }
|
|---|
| 572 |
|
|---|
| 573 | //
|
|---|
| 574 | // Now we have an interesting problem... do we try to find the
|
|---|
| 575 | // closest facing side??
|
|---|
| 576 | //
|
|---|
| 577 | // Considered carefully, the answer is no. We know that if we
|
|---|
| 578 | // are asking for the distance out, we are supposed to be inside,
|
|---|
| 579 | // and vice versa.
|
|---|
| 580 | //
|
|---|
| 581 |
|
|---|
| 582 | return kInfinity;
|
|---|
| 583 | }
|
|---|
| 584 |
|
|---|
| 585 |
|
|---|
| 586 | //
|
|---|
| 587 | // Inside
|
|---|
| 588 | //
|
|---|
| 589 | EInside G4PolyhedraSide::Inside( const G4ThreeVector &p,
|
|---|
| 590 | G4double tolerance,
|
|---|
| 591 | G4double *bestDistance )
|
|---|
| 592 | {
|
|---|
| 593 | //
|
|---|
| 594 | // Which phi segment is closest to this point?
|
|---|
| 595 | //
|
|---|
| 596 | G4int iPhi = ClosestPhiSegment( p.phi() );
|
|---|
| 597 |
|
|---|
| 598 | G4double norm;
|
|---|
| 599 |
|
|---|
| 600 | //
|
|---|
| 601 | // Get distance to this segment
|
|---|
| 602 | //
|
|---|
| 603 | *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
|
|---|
| 604 |
|
|---|
| 605 | //
|
|---|
| 606 | // Use distance along normal to decide return value
|
|---|
| 607 | //
|
|---|
| 608 | if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) )
|
|---|
| 609 | return kSurface;
|
|---|
| 610 | else if (norm < 0)
|
|---|
| 611 | return kInside;
|
|---|
| 612 | else
|
|---|
| 613 | return kOutside;
|
|---|
| 614 | }
|
|---|
| 615 |
|
|---|
| 616 |
|
|---|
| 617 | //
|
|---|
| 618 | // Normal
|
|---|
| 619 | //
|
|---|
| 620 | G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p,
|
|---|
| 621 | G4double *bestDistance )
|
|---|
| 622 | {
|
|---|
| 623 | //
|
|---|
| 624 | // Which phi segment is closest to this point?
|
|---|
| 625 | //
|
|---|
| 626 | G4int iPhi = ClosestPhiSegment( p.phi() );
|
|---|
| 627 |
|
|---|
| 628 | //
|
|---|
| 629 | // Get distance to this segment
|
|---|
| 630 | //
|
|---|
| 631 | G4double norm;
|
|---|
| 632 | *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
|
|---|
| 633 |
|
|---|
| 634 | return vecs[iPhi].normal;
|
|---|
| 635 | }
|
|---|
| 636 |
|
|---|
| 637 |
|
|---|
| 638 | //
|
|---|
| 639 | // Extent
|
|---|
| 640 | //
|
|---|
| 641 | G4double G4PolyhedraSide::Extent( const G4ThreeVector axis )
|
|---|
| 642 | {
|
|---|
| 643 | if (axis.perp2() < DBL_MIN)
|
|---|
| 644 | {
|
|---|
| 645 | //
|
|---|
| 646 | // Special case
|
|---|
| 647 | //
|
|---|
| 648 | return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
|
|---|
| 649 | }
|
|---|
| 650 |
|
|---|
| 651 | G4int iPhi, i1, i2;
|
|---|
| 652 | G4double best;
|
|---|
| 653 | G4ThreeVector *list[4];
|
|---|
| 654 |
|
|---|
| 655 | //
|
|---|
| 656 | // Which phi segment, if any, does the axis belong to
|
|---|
| 657 | //
|
|---|
| 658 | iPhi = PhiSegment( axis.phi() );
|
|---|
| 659 |
|
|---|
| 660 | if (iPhi < 0)
|
|---|
| 661 | {
|
|---|
| 662 | //
|
|---|
| 663 | // No phi segment? Check front edge of first side and
|
|---|
| 664 | // last edge of second side
|
|---|
| 665 | //
|
|---|
| 666 | i1 = 0; i2 = numSide-1;
|
|---|
| 667 | }
|
|---|
| 668 | else
|
|---|
| 669 | {
|
|---|
| 670 | //
|
|---|
| 671 | // Check all corners of matching phi side
|
|---|
| 672 | //
|
|---|
| 673 | i1 = iPhi; i2 = iPhi;
|
|---|
| 674 | }
|
|---|
| 675 |
|
|---|
| 676 | list[0] = vecs[i1].edges[0]->corner;
|
|---|
| 677 | list[1] = vecs[i1].edges[0]->corner+1;
|
|---|
| 678 | list[2] = vecs[i2].edges[1]->corner;
|
|---|
| 679 | list[3] = vecs[i2].edges[1]->corner+1;
|
|---|
| 680 |
|
|---|
| 681 | //
|
|---|
| 682 | // Who's biggest?
|
|---|
| 683 | //
|
|---|
| 684 | best = -kInfinity;
|
|---|
| 685 | G4ThreeVector **vec = list;
|
|---|
| 686 | do
|
|---|
| 687 | {
|
|---|
| 688 | G4double answer = (*vec)->dot(axis);
|
|---|
| 689 | if (answer > best) best = answer;
|
|---|
| 690 | } while( ++vec < list+4 );
|
|---|
| 691 |
|
|---|
| 692 | return best;
|
|---|
| 693 | }
|
|---|
| 694 |
|
|---|
| 695 |
|
|---|
| 696 | //
|
|---|
| 697 | // CalculateExtent
|
|---|
| 698 | //
|
|---|
| 699 | // See notes in G4VCSGface
|
|---|
| 700 | //
|
|---|
| 701 | void G4PolyhedraSide::CalculateExtent( const EAxis axis,
|
|---|
| 702 | const G4VoxelLimits &voxelLimit,
|
|---|
| 703 | const G4AffineTransform &transform,
|
|---|
| 704 | G4SolidExtentList &extentList )
|
|---|
| 705 | {
|
|---|
| 706 | //
|
|---|
| 707 | // Loop over all sides
|
|---|
| 708 | //
|
|---|
| 709 | G4PolyhedraSideVec *vec = vecs;
|
|---|
| 710 | do
|
|---|
| 711 | {
|
|---|
| 712 | //
|
|---|
| 713 | // Fill our polygon with the four corners of
|
|---|
| 714 | // this side, after the specified transformation
|
|---|
| 715 | //
|
|---|
| 716 | G4ClippablePolygon polygon;
|
|---|
| 717 |
|
|---|
| 718 | polygon.AddVertexInOrder(transform.
|
|---|
| 719 | TransformPoint(vec->edges[0]->corner[0]));
|
|---|
| 720 | polygon.AddVertexInOrder(transform.
|
|---|
| 721 | TransformPoint(vec->edges[0]->corner[1]));
|
|---|
| 722 | polygon.AddVertexInOrder(transform.
|
|---|
| 723 | TransformPoint(vec->edges[1]->corner[1]));
|
|---|
| 724 | polygon.AddVertexInOrder(transform.
|
|---|
| 725 | TransformPoint(vec->edges[1]->corner[0]));
|
|---|
| 726 |
|
|---|
| 727 | //
|
|---|
| 728 | // Get extent
|
|---|
| 729 | //
|
|---|
| 730 | if (polygon.PartialClip( voxelLimit, axis ))
|
|---|
| 731 | {
|
|---|
| 732 | //
|
|---|
| 733 | // Get dot product of normal along target axis
|
|---|
| 734 | //
|
|---|
| 735 | polygon.SetNormal( transform.TransformAxis(vec->normal) );
|
|---|
| 736 |
|
|---|
| 737 | extentList.AddSurface( polygon );
|
|---|
| 738 | }
|
|---|
| 739 | } while( ++vec < vecs+numSide );
|
|---|
| 740 |
|
|---|
| 741 | return;
|
|---|
| 742 | }
|
|---|
| 743 |
|
|---|
| 744 |
|
|---|
| 745 | //
|
|---|
| 746 | // IntersectSidePlane
|
|---|
| 747 | //
|
|---|
| 748 | // Decide if a line correctly intersects one side plane of our segment.
|
|---|
| 749 | // It is assumed that the correct side has been chosen, and thus only
|
|---|
| 750 | // the z bounds (of the entire segment) are checked.
|
|---|
| 751 | //
|
|---|
| 752 | // normSign - To be multiplied against normal:
|
|---|
| 753 | // = +1.0 normal is unchanged
|
|---|
| 754 | // = -1.0 normal is reversed (now points inward)
|
|---|
| 755 | //
|
|---|
| 756 | // Arguments:
|
|---|
| 757 | // p - (in) Point
|
|---|
| 758 | // v - (in) Direction
|
|---|
| 759 | // vec - (in) Description record of the side plane
|
|---|
| 760 | // normSign - (in) Sign (+/- 1) to apply to normal
|
|---|
| 761 | // surfTolerance - (in) Surface tolerance (generally > 0, see below)
|
|---|
| 762 | // distance - (out) Distance along v to intersection
|
|---|
| 763 | // distFromSurface - (out) Distance from surface normal
|
|---|
| 764 | //
|
|---|
| 765 | // Notes:
|
|---|
| 766 | // surfTolerance - Used to decide if a point is behind the surface,
|
|---|
| 767 | // a point is allow to be -surfTolerance behind the
|
|---|
| 768 | // surface (as measured along the normal), but *only*
|
|---|
| 769 | // if the point is within the r/z bounds + surfTolerance
|
|---|
| 770 | // of the segment.
|
|---|
| 771 | //
|
|---|
| 772 | G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p,
|
|---|
| 773 | const G4ThreeVector &v,
|
|---|
| 774 | const G4PolyhedraSideVec vec,
|
|---|
| 775 | G4double normSign,
|
|---|
| 776 | G4double surfTolerance,
|
|---|
| 777 | G4double &distance,
|
|---|
| 778 | G4double &distFromSurface )
|
|---|
| 779 | {
|
|---|
| 780 | //
|
|---|
| 781 | // Correct normal? Here we have straight sides, and can safely ignore
|
|---|
| 782 | // intersections where the dot product with the normal is zero.
|
|---|
| 783 | //
|
|---|
| 784 | G4double dotProd = normSign*v.dot(vec.normal);
|
|---|
| 785 |
|
|---|
| 786 | if (dotProd <= 0) return false;
|
|---|
| 787 |
|
|---|
| 788 | //
|
|---|
| 789 | // Calculate distance to surface. If the side is too far
|
|---|
| 790 | // behind the point, we must reject it.
|
|---|
| 791 | //
|
|---|
| 792 | G4ThreeVector delta = p - vec.center;
|
|---|
| 793 | distFromSurface = -normSign*delta.dot(vec.normal);
|
|---|
| 794 |
|
|---|
| 795 | if (distFromSurface < -surfTolerance) return false;
|
|---|
| 796 |
|
|---|
| 797 | //
|
|---|
| 798 | // Calculate precise distance to intersection with the side
|
|---|
| 799 | // (along the trajectory, not normal to the surface)
|
|---|
| 800 | //
|
|---|
| 801 | distance = distFromSurface/dotProd;
|
|---|
| 802 |
|
|---|
| 803 | //
|
|---|
| 804 | // Do we fall off the r/z extent of the segment?
|
|---|
| 805 | //
|
|---|
| 806 | // Calculate this very, very carefully! Why?
|
|---|
| 807 | // 1. If a RZ end is at R=0, you can't miss!
|
|---|
| 808 | // 2. If you just fall off in RZ, the answer must
|
|---|
| 809 | // be consistent with adjacent G4PolyhedraSide faces.
|
|---|
| 810 | // (2) implies that only variables used by other G4PolyhedraSide
|
|---|
| 811 | // faces may be used, which includes only: p, v, and the edge corners.
|
|---|
| 812 | // It also means that one side is a ">" or "<", which the other
|
|---|
| 813 | // must be ">=" or "<=". Fortunately, this isn't a new problem.
|
|---|
| 814 | // The solution below I borrowed from Joseph O'Rourke,
|
|---|
| 815 | // "Computational Geometry in C (Second Edition)"
|
|---|
| 816 | // See: http://cs.smith.edu/~orourke/
|
|---|
| 817 | //
|
|---|
| 818 | G4ThreeVector ic = p + distance*v - vec.center;
|
|---|
| 819 | G4double atRZ = vec.surfRZ.dot(ic);
|
|---|
| 820 |
|
|---|
| 821 | if (atRZ < 0)
|
|---|
| 822 | {
|
|---|
| 823 | if (r[0]==0) return true; // Can't miss!
|
|---|
| 824 |
|
|---|
| 825 | if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile.
|
|---|
| 826 |
|
|---|
| 827 | G4ThreeVector q = p + v;
|
|---|
| 828 | G4ThreeVector qa = q - vec.edges[0]->corner[0],
|
|---|
| 829 | qb = q - vec.edges[1]->corner[0];
|
|---|
| 830 | G4ThreeVector qacb = qa.cross(qb);
|
|---|
| 831 | if (normSign*qacb.dot(v) < 0) return false;
|
|---|
| 832 |
|
|---|
| 833 | if (distFromSurface < 0)
|
|---|
| 834 | {
|
|---|
| 835 | if (atRZ < -lenRZ-surfTolerance) return false;
|
|---|
| 836 | }
|
|---|
| 837 | }
|
|---|
| 838 | else if (atRZ > 0)
|
|---|
| 839 | {
|
|---|
| 840 | if (r[1]==0) return true; // Can't miss!
|
|---|
| 841 |
|
|---|
| 842 | if (atRZ > lenRZ*1.2) return false; // Missed by a mile
|
|---|
| 843 |
|
|---|
| 844 | G4ThreeVector q = p + v;
|
|---|
| 845 | G4ThreeVector qa = q - vec.edges[0]->corner[1],
|
|---|
| 846 | qb = q - vec.edges[1]->corner[1];
|
|---|
| 847 | G4ThreeVector qacb = qa.cross(qb);
|
|---|
| 848 | if (normSign*qacb.dot(v) >= 0) return false;
|
|---|
| 849 |
|
|---|
| 850 | if (distFromSurface < 0)
|
|---|
| 851 | {
|
|---|
| 852 | if (atRZ > lenRZ+surfTolerance) return false;
|
|---|
| 853 | }
|
|---|
| 854 | }
|
|---|
| 855 |
|
|---|
| 856 | return true;
|
|---|
| 857 | }
|
|---|
| 858 |
|
|---|
| 859 |
|
|---|
| 860 | //
|
|---|
| 861 | // LineHitsSegments
|
|---|
| 862 | //
|
|---|
| 863 | // Calculate which phi segments a line intersects in three dimensions.
|
|---|
| 864 | // No check is made as to whether the intersections are within the z bounds of
|
|---|
| 865 | // the segment.
|
|---|
| 866 | //
|
|---|
| 867 | G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p,
|
|---|
| 868 | const G4ThreeVector &v,
|
|---|
| 869 | G4int *i1, G4int *i2 )
|
|---|
| 870 | {
|
|---|
| 871 | G4double s1, s2;
|
|---|
| 872 | //
|
|---|
| 873 | // First, decide if and where the line intersects the cone
|
|---|
| 874 | //
|
|---|
| 875 | G4int n = cone->LineHitsCone( p, v, &s1, &s2 );
|
|---|
| 876 |
|
|---|
| 877 | if (n==0) return 0;
|
|---|
| 878 |
|
|---|
| 879 | //
|
|---|
| 880 | // Try first intersection.
|
|---|
| 881 | //
|
|---|
| 882 | *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) );
|
|---|
| 883 | if (n==1)
|
|---|
| 884 | {
|
|---|
| 885 | return (*i1 < 0) ? 0 : 1;
|
|---|
| 886 | }
|
|---|
| 887 |
|
|---|
| 888 | //
|
|---|
| 889 | // Try second intersection
|
|---|
| 890 | //
|
|---|
| 891 | *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) );
|
|---|
| 892 | if (*i1 == *i2) return 0;
|
|---|
| 893 |
|
|---|
| 894 | if (*i1 < 0)
|
|---|
| 895 | {
|
|---|
| 896 | if (*i2 < 0) return 0;
|
|---|
| 897 | *i1 = *i2;
|
|---|
| 898 | return 1;
|
|---|
| 899 | }
|
|---|
| 900 |
|
|---|
| 901 | if (*i2 < 0) return 1;
|
|---|
| 902 |
|
|---|
| 903 | return 2;
|
|---|
| 904 | }
|
|---|
| 905 |
|
|---|
| 906 |
|
|---|
| 907 | //
|
|---|
| 908 | // ClosestPhiSegment
|
|---|
| 909 | //
|
|---|
| 910 | // Decide which phi segment is closest in phi to the point.
|
|---|
| 911 | // The result is the same as PhiSegment if there is no phi opening.
|
|---|
| 912 | //
|
|---|
| 913 | G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 )
|
|---|
| 914 | {
|
|---|
| 915 | G4int iPhi = PhiSegment( phi0 );
|
|---|
| 916 | if (iPhi >= 0) return iPhi;
|
|---|
| 917 |
|
|---|
| 918 | //
|
|---|
| 919 | // Boogers! The points falls inside the phi segment.
|
|---|
| 920 | // Look for the closest point: the start, or end
|
|---|
| 921 | //
|
|---|
| 922 | G4double phi = phi0;
|
|---|
| 923 |
|
|---|
| 924 | while( phi < startPhi ) phi += twopi;
|
|---|
| 925 | G4double d1 = phi-endPhi;
|
|---|
| 926 |
|
|---|
| 927 | while( phi > startPhi ) phi -= twopi;
|
|---|
| 928 | G4double d2 = startPhi-phi;
|
|---|
| 929 |
|
|---|
| 930 | return (d2 < d1) ? 0 : numSide-1;
|
|---|
| 931 | }
|
|---|
| 932 |
|
|---|
| 933 |
|
|---|
| 934 | //
|
|---|
| 935 | // PhiSegment
|
|---|
| 936 | //
|
|---|
| 937 | // Decide which phi segment an angle belongs to, counting from zero.
|
|---|
| 938 | // A value of -1 indicates that the phi value is outside the shape
|
|---|
| 939 | // (only possible if phiTotal < 360 degrees).
|
|---|
| 940 | //
|
|---|
| 941 | G4int G4PolyhedraSide::PhiSegment( G4double phi0 )
|
|---|
| 942 | {
|
|---|
| 943 | //
|
|---|
| 944 | // How far are we from phiStart? Come up with a positive answer
|
|---|
| 945 | // that is less than 2*PI
|
|---|
| 946 | //
|
|---|
| 947 | G4double phi = phi0 - startPhi;
|
|---|
| 948 | while( phi < 0 ) phi += twopi;
|
|---|
| 949 | while( phi > twopi ) phi -= twopi;
|
|---|
| 950 |
|
|---|
| 951 | //
|
|---|
| 952 | // Divide
|
|---|
| 953 | //
|
|---|
| 954 | G4int answer = (G4int)(phi/deltaPhi);
|
|---|
| 955 |
|
|---|
| 956 | if (answer >= numSide)
|
|---|
| 957 | {
|
|---|
| 958 | if (phiIsOpen)
|
|---|
| 959 | {
|
|---|
| 960 | return -1; // Looks like we missed
|
|---|
| 961 | }
|
|---|
| 962 | else
|
|---|
| 963 | {
|
|---|
| 964 | answer = numSide-1; // Probably just roundoff
|
|---|
| 965 | }
|
|---|
| 966 | }
|
|---|
| 967 |
|
|---|
| 968 | return answer;
|
|---|
| 969 | }
|
|---|
| 970 |
|
|---|
| 971 |
|
|---|
| 972 | //
|
|---|
| 973 | // DistanceToOneSide
|
|---|
| 974 | //
|
|---|
| 975 | // Arguments:
|
|---|
| 976 | // p - (in) Point to check
|
|---|
| 977 | // vec - (in) vector set of this side
|
|---|
| 978 | // normDist - (out) distance normal to the side or edge, as appropriate, signed
|
|---|
| 979 | // Return value = total distance from the side
|
|---|
| 980 | //
|
|---|
| 981 | G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p,
|
|---|
| 982 | const G4PolyhedraSideVec &vec,
|
|---|
| 983 | G4double *normDist )
|
|---|
| 984 | {
|
|---|
| 985 | G4ThreeVector pc = p - vec.center;
|
|---|
| 986 |
|
|---|
| 987 | //
|
|---|
| 988 | // Get normal distance
|
|---|
| 989 | //
|
|---|
| 990 | *normDist = vec.normal.dot(pc);
|
|---|
| 991 |
|
|---|
| 992 | //
|
|---|
| 993 | // Add edge penalty
|
|---|
| 994 | //
|
|---|
| 995 | return DistanceAway( p, vec, normDist );
|
|---|
| 996 | }
|
|---|
| 997 |
|
|---|
| 998 |
|
|---|
| 999 | //
|
|---|
| 1000 | // DistanceAway
|
|---|
| 1001 | //
|
|---|
| 1002 | // Add distance from side edges, if necesssary, to total distance,
|
|---|
| 1003 | // and updates normDist appropriate depending on edge normals.
|
|---|
| 1004 | //
|
|---|
| 1005 | G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p,
|
|---|
| 1006 | const G4PolyhedraSideVec &vec,
|
|---|
| 1007 | G4double *normDist )
|
|---|
| 1008 | {
|
|---|
| 1009 | G4double distOut2;
|
|---|
| 1010 | G4ThreeVector pc = p - vec.center;
|
|---|
| 1011 | G4double distFaceNorm = *normDist;
|
|---|
| 1012 |
|
|---|
| 1013 | //
|
|---|
| 1014 | // Okay, are we inside bounds?
|
|---|
| 1015 | //
|
|---|
| 1016 | G4double pcDotRZ = pc.dot(vec.surfRZ);
|
|---|
| 1017 | G4double pcDotPhi = pc.dot(vec.surfPhi);
|
|---|
| 1018 |
|
|---|
| 1019 | //
|
|---|
| 1020 | // Go through all permutations.
|
|---|
| 1021 | // Phi
|
|---|
| 1022 | // | | ^
|
|---|
| 1023 | // B | H | E |
|
|---|
| 1024 | // ------[1]------------[3]----- |
|
|---|
| 1025 | // |XXXXXXXXXXXXXX| +----> RZ
|
|---|
| 1026 | // C |XXXXXXXXXXXXXX| F
|
|---|
| 1027 | // |XXXXXXXXXXXXXX|
|
|---|
| 1028 | // ------[0]------------[2]----
|
|---|
| 1029 | // A | G | D
|
|---|
| 1030 | // | |
|
|---|
| 1031 | //
|
|---|
| 1032 | // It's real messy, but at least it's quick
|
|---|
| 1033 | //
|
|---|
| 1034 |
|
|---|
| 1035 | if (pcDotRZ < -lenRZ)
|
|---|
| 1036 | {
|
|---|
| 1037 | G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1];
|
|---|
| 1038 | G4double distOutZ = pcDotRZ+lenRZ;
|
|---|
| 1039 | //
|
|---|
| 1040 | // Below in RZ
|
|---|
| 1041 | //
|
|---|
| 1042 | if (pcDotPhi < -lenPhiZ)
|
|---|
| 1043 | {
|
|---|
| 1044 | //
|
|---|
| 1045 | // ...and below in phi. Find distance to point (A)
|
|---|
| 1046 | //
|
|---|
| 1047 | G4double distOutPhi = pcDotPhi+lenPhiZ;
|
|---|
| 1048 | distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
|
|---|
| 1049 | G4ThreeVector pa = p - vec.edges[0]->corner[0];
|
|---|
| 1050 | *normDist = pa.dot(vec.edges[0]->cornNorm[0]);
|
|---|
| 1051 | }
|
|---|
| 1052 | else if (pcDotPhi > lenPhiZ)
|
|---|
| 1053 | {
|
|---|
| 1054 | //
|
|---|
| 1055 | // ...and above in phi. Find distance to point (B)
|
|---|
| 1056 | //
|
|---|
| 1057 | G4double distOutPhi = pcDotPhi-lenPhiZ;
|
|---|
| 1058 | distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
|
|---|
| 1059 | G4ThreeVector pb = p - vec.edges[1]->corner[0];
|
|---|
| 1060 | *normDist = pb.dot(vec.edges[1]->cornNorm[0]);
|
|---|
| 1061 | }
|
|---|
| 1062 | else
|
|---|
| 1063 | {
|
|---|
| 1064 | //
|
|---|
| 1065 | // ...and inside in phi. Find distance to line (C)
|
|---|
| 1066 | //
|
|---|
| 1067 | G4ThreeVector pa = p - vec.edges[0]->corner[0];
|
|---|
| 1068 | distOut2 = distOutZ*distOutZ;
|
|---|
| 1069 | *normDist = pa.dot(vec.edgeNorm[0]);
|
|---|
| 1070 | }
|
|---|
| 1071 | }
|
|---|
| 1072 | else if (pcDotRZ > lenRZ)
|
|---|
| 1073 | {
|
|---|
| 1074 | G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1];
|
|---|
| 1075 | G4double distOutZ = pcDotRZ-lenRZ;
|
|---|
| 1076 | //
|
|---|
| 1077 | // Above in RZ
|
|---|
| 1078 | //
|
|---|
| 1079 | if (pcDotPhi < -lenPhiZ)
|
|---|
| 1080 | {
|
|---|
| 1081 | //
|
|---|
| 1082 | // ...and below in phi. Find distance to point (D)
|
|---|
| 1083 | //
|
|---|
| 1084 | G4double distOutPhi = pcDotPhi+lenPhiZ;
|
|---|
| 1085 | distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
|
|---|
| 1086 | G4ThreeVector pd = p - vec.edges[0]->corner[1];
|
|---|
| 1087 | *normDist = pd.dot(vec.edges[0]->cornNorm[1]);
|
|---|
| 1088 | }
|
|---|
| 1089 | else if (pcDotPhi > lenPhiZ)
|
|---|
| 1090 | {
|
|---|
| 1091 | //
|
|---|
| 1092 | // ...and above in phi. Find distance to point (E)
|
|---|
| 1093 | //
|
|---|
| 1094 | G4double distOutPhi = pcDotPhi-lenPhiZ;
|
|---|
| 1095 | distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
|
|---|
| 1096 | G4ThreeVector pe = p - vec.edges[1]->corner[1];
|
|---|
| 1097 | *normDist = pe.dot(vec.edges[1]->cornNorm[1]);
|
|---|
| 1098 | }
|
|---|
| 1099 | else
|
|---|
| 1100 | {
|
|---|
| 1101 | //
|
|---|
| 1102 | // ...and inside in phi. Find distance to line (F)
|
|---|
| 1103 | //
|
|---|
| 1104 | distOut2 = distOutZ*distOutZ;
|
|---|
| 1105 | G4ThreeVector pd = p - vec.edges[0]->corner[1];
|
|---|
| 1106 | *normDist = pd.dot(vec.edgeNorm[1]);
|
|---|
| 1107 | }
|
|---|
| 1108 | }
|
|---|
| 1109 | else
|
|---|
| 1110 | {
|
|---|
| 1111 | G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1];
|
|---|
| 1112 | //
|
|---|
| 1113 | // We are inside RZ bounds
|
|---|
| 1114 | //
|
|---|
| 1115 | if (pcDotPhi < -lenPhiZ)
|
|---|
| 1116 | {
|
|---|
| 1117 | //
|
|---|
| 1118 | // ...and below in phi. Find distance to line (G)
|
|---|
| 1119 | //
|
|---|
| 1120 | G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ);
|
|---|
| 1121 | distOut2 = distOut*distOut;
|
|---|
| 1122 | G4ThreeVector pd = p - vec.edges[0]->corner[1];
|
|---|
| 1123 | *normDist = pd.dot(vec.edges[0]->normal);
|
|---|
| 1124 | }
|
|---|
| 1125 | else if (pcDotPhi > lenPhiZ)
|
|---|
| 1126 | {
|
|---|
| 1127 | //
|
|---|
| 1128 | // ...and above in phi. Find distance to line (H)
|
|---|
| 1129 | //
|
|---|
| 1130 | G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ);
|
|---|
| 1131 | distOut2 = distOut*distOut;
|
|---|
| 1132 | G4ThreeVector pe = p - vec.edges[1]->corner[1];
|
|---|
| 1133 | *normDist = pe.dot(vec.edges[1]->normal);
|
|---|
| 1134 | }
|
|---|
| 1135 | else
|
|---|
| 1136 | {
|
|---|
| 1137 | //
|
|---|
| 1138 | // Inside bounds! No penalty.
|
|---|
| 1139 | //
|
|---|
| 1140 | return std::fabs(distFaceNorm);
|
|---|
| 1141 | }
|
|---|
| 1142 | }
|
|---|
| 1143 | return std::sqrt( distFaceNorm*distFaceNorm + distOut2 );
|
|---|
| 1144 | }
|
|---|
| 1145 |
|
|---|
| 1146 |
|
|---|
| 1147 | //
|
|---|
| 1148 | // Calculation of surface area of a triangle.
|
|---|
| 1149 | // At the same time a random point in the triangle is given
|
|---|
| 1150 | //
|
|---|
| 1151 | G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1,
|
|---|
| 1152 | G4ThreeVector p2,
|
|---|
| 1153 | G4ThreeVector p3,
|
|---|
| 1154 | G4ThreeVector *p4 )
|
|---|
| 1155 | {
|
|---|
| 1156 | G4ThreeVector v, w;
|
|---|
| 1157 |
|
|---|
| 1158 | v = p3 - p1;
|
|---|
| 1159 | w = p1 - p2;
|
|---|
| 1160 | G4double lambda1 = G4UniformRand();
|
|---|
| 1161 | G4double lambda2 = lambda1*G4UniformRand();
|
|---|
| 1162 |
|
|---|
| 1163 | *p4=p2 + lambda1*w + lambda2*v;
|
|---|
| 1164 | return 0.5*(v.cross(w)).mag();
|
|---|
| 1165 | }
|
|---|
| 1166 |
|
|---|
| 1167 |
|
|---|
| 1168 | //
|
|---|
| 1169 | // GetPointOnPlane
|
|---|
| 1170 | //
|
|---|
| 1171 | // Auxiliary method for GetPointOnSurface()
|
|---|
| 1172 | //
|
|---|
| 1173 | G4ThreeVector
|
|---|
| 1174 | G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1,
|
|---|
| 1175 | G4ThreeVector p2, G4ThreeVector p3,
|
|---|
| 1176 | G4double *Area )
|
|---|
| 1177 | {
|
|---|
| 1178 | G4double chose,aOne,aTwo;
|
|---|
| 1179 | G4ThreeVector point1,point2;
|
|---|
| 1180 | aOne = SurfaceTriangle(p0,p1,p2,&point1);
|
|---|
| 1181 | aTwo = SurfaceTriangle(p2,p3,p0,&point2);
|
|---|
| 1182 | *Area= aOne+aTwo;
|
|---|
| 1183 |
|
|---|
| 1184 | chose = G4UniformRand()*(aOne+aTwo);
|
|---|
| 1185 | if( (chose>=0.) && (chose < aOne) )
|
|---|
| 1186 | {
|
|---|
| 1187 | return (point1);
|
|---|
| 1188 | }
|
|---|
| 1189 | return (point2);
|
|---|
| 1190 | }
|
|---|
| 1191 |
|
|---|
| 1192 |
|
|---|
| 1193 | //
|
|---|
| 1194 | // SurfaceArea()
|
|---|
| 1195 | //
|
|---|
| 1196 | G4double G4PolyhedraSide::SurfaceArea()
|
|---|
| 1197 | {
|
|---|
| 1198 | if( fSurfaceArea==0. )
|
|---|
| 1199 | {
|
|---|
| 1200 | // Define the variables
|
|---|
| 1201 | //
|
|---|
| 1202 | G4double area,areas;
|
|---|
| 1203 | G4ThreeVector point1;
|
|---|
| 1204 | G4ThreeVector v1,v2,v3,v4;
|
|---|
| 1205 | G4PolyhedraSideVec *vec = vecs;
|
|---|
| 1206 | areas=0.;
|
|---|
| 1207 |
|
|---|
| 1208 | // Do a loop on all SideEdge
|
|---|
| 1209 | //
|
|---|
| 1210 | do
|
|---|
| 1211 | {
|
|---|
| 1212 | // Define 4points for a Plane or Triangle
|
|---|
| 1213 | //
|
|---|
| 1214 | G4ThreeVector v1=vec->edges[0]->corner[0];
|
|---|
| 1215 | G4ThreeVector v2=vec->edges[0]->corner[1];
|
|---|
| 1216 | G4ThreeVector v3=vec->edges[1]->corner[1];
|
|---|
| 1217 | G4ThreeVector v4=vec->edges[1]->corner[0];
|
|---|
| 1218 | point1=GetPointOnPlane(v1,v2,v3,v4,&area);
|
|---|
| 1219 | areas+=area;
|
|---|
| 1220 | } while( ++vec < vecs + numSide);
|
|---|
| 1221 |
|
|---|
| 1222 | fSurfaceArea=areas;
|
|---|
| 1223 | }
|
|---|
| 1224 | return fSurfaceArea;
|
|---|
| 1225 | }
|
|---|
| 1226 |
|
|---|
| 1227 |
|
|---|
| 1228 | //
|
|---|
| 1229 | // GetPointOnFace()
|
|---|
| 1230 | //
|
|---|
| 1231 | G4ThreeVector G4PolyhedraSide::GetPointOnFace()
|
|---|
| 1232 | {
|
|---|
| 1233 | // Define the variables
|
|---|
| 1234 | //
|
|---|
| 1235 | std::vector<G4double>areas;
|
|---|
| 1236 | std::vector<G4ThreeVector>points;
|
|---|
| 1237 | G4double area=0;
|
|---|
| 1238 | G4double result1;
|
|---|
| 1239 | G4ThreeVector point1;
|
|---|
| 1240 | G4ThreeVector v1,v2,v3,v4;
|
|---|
| 1241 | G4PolyhedraSideVec *vec = vecs;
|
|---|
| 1242 |
|
|---|
| 1243 | // Do a loop on all SideEdge
|
|---|
| 1244 | //
|
|---|
| 1245 | do
|
|---|
| 1246 | {
|
|---|
| 1247 | // Define 4points for a Plane or Triangle
|
|---|
| 1248 | //
|
|---|
| 1249 | G4ThreeVector v1=vec->edges[0]->corner[0];
|
|---|
| 1250 | G4ThreeVector v2=vec->edges[0]->corner[1];
|
|---|
| 1251 | G4ThreeVector v3=vec->edges[1]->corner[1];
|
|---|
| 1252 | G4ThreeVector v4=vec->edges[1]->corner[0];
|
|---|
| 1253 | point1=GetPointOnPlane(v1,v2,v3,v4,&result1);
|
|---|
| 1254 | points.push_back(point1);
|
|---|
| 1255 | areas.push_back(result1);
|
|---|
| 1256 | area+=result1;
|
|---|
| 1257 | } while( ++vec < vecs+numSide );
|
|---|
| 1258 |
|
|---|
| 1259 | // Choose randomly one of the surfaces and point on it
|
|---|
| 1260 | //
|
|---|
| 1261 | G4double chose = area*G4UniformRand();
|
|---|
| 1262 | G4double Achose1,Achose2;
|
|---|
| 1263 | Achose1=0;Achose2=0.;
|
|---|
| 1264 | G4int i=0;
|
|---|
| 1265 | do
|
|---|
| 1266 | {
|
|---|
| 1267 | Achose2+=areas[i];
|
|---|
| 1268 | if(chose>=Achose1 && chose<Achose2)
|
|---|
| 1269 | {
|
|---|
| 1270 | point1=points[i] ; break;
|
|---|
| 1271 | }
|
|---|
| 1272 | i++; Achose1=Achose2;
|
|---|
| 1273 | } while( i<numSide );
|
|---|
| 1274 |
|
|---|
| 1275 | return point1;
|
|---|
| 1276 | }
|
|---|