source: trunk/source/geometry/solids/specific/src/G4PolyhedraSide.cc@ 1316

Last change on this file since 1316 was 1315, checked in by garnier, 15 years ago

update geant4-09-04-beta-cand-01 interfaces-V09-03-09 vis-V09-03-08

File size: 34.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4PolyhedraSide.cc,v 1.17 2010/02/24 11:31:49 gcosmo Exp $
28// GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
29//
30//
31// --------------------------------------------------------------------
32// GEANT 4 class source file
33//
34//
35// G4PolyhedraSide.cc
36//
37// Implementation of the face representing one segmented side of a Polyhedra
38//
39// --------------------------------------------------------------------
40
41#include "G4PolyhedraSide.hh"
42#include "G4IntersectingCone.hh"
43#include "G4ClippablePolygon.hh"
44#include "G4AffineTransform.hh"
45#include "G4SolidExtentList.hh"
46#include "G4GeometryTolerance.hh"
47
48#include "Randomize.hh"
49
50//
51// Constructor
52//
53// Values for r1,z1 and r2,z2 should be specified in clockwise
54// order in (r,z).
55//
56G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ,
57 const G4PolyhedraSideRZ *tail,
58 const G4PolyhedraSideRZ *head,
59 const G4PolyhedraSideRZ *nextRZ,
60 G4int theNumSide,
61 G4double thePhiStart,
62 G4double thePhiTotal,
63 G4bool thePhiIsOpen,
64 G4bool isAllBehind )
65{
66 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
67 fSurfaceArea=0.;
68 fPhi.first = G4ThreeVector(0,0,0);
69 fPhi.second= 0.0;
70
71 //
72 // Record values
73 //
74 r[0] = tail->r; z[0] = tail->z;
75 r[1] = head->r; z[1] = head->z;
76
77 G4double phiTotal;
78
79 //
80 // Set phi to our convention
81 //
82 startPhi = thePhiStart;
83 while (startPhi < 0.0) startPhi += twopi;
84
85 phiIsOpen = thePhiIsOpen;
86 phiTotal = (phiIsOpen) ? thePhiTotal : twopi;
87
88 allBehind = isAllBehind;
89
90 //
91 // Make our intersecting cone
92 //
93 cone = new G4IntersectingCone( r, z );
94
95 //
96 // Construct side plane vector set
97 //
98 numSide = theNumSide;
99 deltaPhi = phiTotal/theNumSide;
100 endPhi = startPhi+phiTotal;
101
102 vecs = new G4PolyhedraSideVec[numSide];
103
104 edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide];
105
106 //
107 // ...this is where we start
108 //
109 G4double phi = startPhi;
110 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ),
111 b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ),
112 c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ),
113 d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ),
114 a2, b2, c2, d2;
115 G4PolyhedraSideEdge *edge = edges;
116
117 G4PolyhedraSideVec *vec = vecs;
118 do
119 {
120 //
121 // ...this is where we are going
122 //
123 phi += deltaPhi;
124 a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] );
125 b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] );
126 c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z );
127 d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z );
128
129 G4ThreeVector tt;
130
131 //
132 // ...build some relevant vectors.
133 // the point is to sacrifice a little memory with precalcs
134 // to gain speed
135 //
136 vec->center = 0.25*( a1 + a2 + b1 + b2 );
137
138 tt = b2 + b1 - a2 - a1;
139 vec->surfRZ = tt.unit();
140 if (vec==vecs) lenRZ = 0.25*tt.mag();
141
142 tt = b2 - b1 + a2 - a1;
143 vec->surfPhi = tt.unit();
144 if (vec==vecs)
145 {
146 lenPhi[0] = 0.25*tt.mag();
147 tt = b2 - b1;
148 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ;
149 }
150
151 tt = vec->surfPhi.cross(vec->surfRZ);
152 vec->normal = tt.unit();
153
154 //
155 // ...edge normals are the average of the normals of
156 // the two faces they connect.
157 //
158 // ...edge normals are necessary if we are to accurately
159 // decide if a point is "inside" a face. For non-convex
160 // shapes, it is absolutely necessary to know information
161 // on adjacent faces to accurate determine this.
162 //
163 // ...we don't need them for the phi edges, since that
164 // information is taken care of internally. The r/z edges,
165 // however, depend on the adjacent G4PolyhedraSide.
166 //
167 G4ThreeVector a12, adj;
168
169 a12 = a2-a1;
170
171 adj = 0.5*(c1+c2-a1-a2);
172 adj = adj.cross(a12);
173 adj = adj.unit() + vec->normal;
174 vec->edgeNorm[0] = adj.unit();
175
176 a12 = b1-b2;
177 adj = 0.5*(d1+d2-b1-b2);
178 adj = adj.cross(a12);
179 adj = adj.unit() + vec->normal;
180 vec->edgeNorm[1] = adj.unit();
181
182 //
183 // ...the corners are crucial. It is important that
184 // they are calculated consistently for adjacent
185 // G4PolyhedraSides, to avoid gaps caused by roundoff.
186 //
187 vec->edges[0] = edge;
188 edge->corner[0] = a1;
189 edge->corner[1] = b1;
190 edge++;
191 vec->edges[1] = edge;
192
193 a1 = a2;
194 b1 = b2;
195 c1 = c2;
196 d1 = d2;
197 } while( ++vec < vecs+numSide );
198
199 //
200 // Clean up hanging edge
201 //
202 if (phiIsOpen)
203 {
204 edge->corner[0] = a2;
205 edge->corner[1] = b2;
206 }
207 else
208 {
209 vecs[numSide-1].edges[1] = edges;
210 }
211
212 //
213 // Go back and fill in remaining fields in edges
214 //
215 vec = vecs;
216 G4PolyhedraSideVec *prev = vecs+numSide-1;
217 do
218 {
219 edge = vec->edges[0]; // The edge between prev and vec
220
221 //
222 // Okay: edge normal is average of normals of adjacent faces
223 //
224 G4ThreeVector eNorm = vec->normal + prev->normal;
225 edge->normal = eNorm.unit();
226
227 //
228 // Vertex normal is average of norms of adjacent surfaces (all four)
229 // However, vec->edgeNorm is unit vector in some direction
230 // as the sum of normals of adjacent PolyhedraSide with vec.
231 // The normalization used for this vector should be the same
232 // for vec and prev.
233 //
234 eNorm = vec->edgeNorm[0] + prev->edgeNorm[0];
235 edge->cornNorm[0] = eNorm.unit();
236
237 eNorm = vec->edgeNorm[1] + prev->edgeNorm[1];
238 edge->cornNorm[1] = eNorm.unit();
239 } while( prev=vec, ++vec < vecs + numSide );
240
241 if (phiIsOpen)
242 {
243 // G4double rFact = std::cos(0.5*deltaPhi);
244 //
245 // If phi is open, we need to patch up normals of the
246 // first and last edges and their corresponding
247 // vertices.
248 //
249 // We use vectors that are in the plane of the
250 // face. This should be safe.
251 //
252 vec = vecs;
253
254 G4ThreeVector normvec = vec->edges[0]->corner[0]
255 - vec->edges[0]->corner[1];
256 normvec = normvec.cross(vec->normal);
257 if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec;
258
259 vec->edges[0]->normal = normvec.unit();
260
261 vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0]
262 - vec->center).unit();
263 vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1]
264 - vec->center).unit();
265
266 //
267 // Repeat for ending phi
268 //
269 vec = vecs + numSide - 1;
270
271 normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1];
272 normvec = normvec.cross(vec->normal);
273 if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec;
274
275 vec->edges[1]->normal = normvec.unit();
276
277 vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0]
278 - vec->center).unit();
279 vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1]
280 - vec->center).unit();
281 }
282
283 //
284 // edgeNorm is the factor one multiplies the distance along vector phi
285 // on the surface of one of our sides in order to calculate the distance
286 // from the edge. (see routine DistanceAway)
287 //
288 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] );
289}
290
291
292//
293// Fake default constructor - sets only member data and allocates memory
294// for usage restricted to object persistency.
295//
296G4PolyhedraSide::G4PolyhedraSide( __void__&)
297 : cone(0), vecs(0), edges(0)
298{
299}
300
301
302//
303// Destructor
304//
305G4PolyhedraSide::~G4PolyhedraSide()
306{
307 delete cone;
308 delete [] vecs;
309 delete [] edges;
310}
311
312
313//
314// Copy constructor
315//
316G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source )
317 : G4VCSGface()
318{
319 CopyStuff( source );
320}
321
322
323//
324// Assignment operator
325//
326G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source )
327{
328 if (this == &source) return *this;
329
330 delete cone;
331 delete [] vecs;
332 delete [] edges;
333
334 CopyStuff( source );
335
336 return *this;
337}
338
339
340//
341// CopyStuff
342//
343void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source )
344{
345 //
346 // The simple stuff
347 //
348 numSide = source.numSide;
349 r[0] = source.r[0];
350 r[1] = source.r[1];
351 z[0] = source.z[0];
352 z[1] = source.z[1];
353 startPhi = source.startPhi;
354 deltaPhi = source.deltaPhi;
355 endPhi = source.endPhi;
356 phiIsOpen = source.phiIsOpen;
357 allBehind = source.allBehind;
358
359 lenRZ = source.lenRZ;
360 lenPhi[0] = source.lenPhi[0];
361 lenPhi[1] = source.lenPhi[1];
362 edgeNorm = source.edgeNorm;
363
364 kCarTolerance = source.kCarTolerance;
365 fSurfaceArea = source.fSurfaceArea;
366
367 cone = new G4IntersectingCone( *source.cone );
368
369 //
370 // Duplicate edges
371 //
372 G4int numEdges = phiIsOpen ? numSide+1 : numSide;
373 edges = new G4PolyhedraSideEdge[numEdges];
374
375 G4PolyhedraSideEdge *edge = edges,
376 *sourceEdge = source.edges;
377 do
378 {
379 *edge = *sourceEdge;
380 } while( ++sourceEdge, ++edge < edges + numEdges);
381
382 //
383 // Duplicate vecs
384 //
385 vecs = new G4PolyhedraSideVec[numSide];
386
387 G4PolyhedraSideVec *vec = vecs,
388 *sourceVec = source.vecs;
389 do
390 {
391 *vec = *sourceVec;
392 vec->edges[0] = edges + (sourceVec->edges[0] - source.edges);
393 vec->edges[1] = edges + (sourceVec->edges[1] - source.edges);
394 } while( ++sourceVec, ++vec < vecs + numSide );
395}
396
397
398//
399// Intersect
400//
401// Decide if a line intersects the face.
402//
403// Arguments:
404// p = (in) starting point of line segment
405// v = (in) direction of line segment (assumed a unit vector)
406// A, B = (in) 2d transform variables (see note top of file)
407// normSign = (in) desired sign for dot product with normal (see below)
408// surfTolerance = (in) minimum distance from the surface
409// vecs = (in) Vector set array
410// distance = (out) distance to surface furfilling all requirements
411// distFromSurface = (out) distance from the surface
412// thisNormal = (out) normal vector of the intersecting surface
413//
414// Return value:
415// true if an intersection is found. Otherwise, output parameters are
416// undefined.
417//
418// Notes:
419// * normSign: if we are "inside" the shape and only want to find out how far
420// to leave the shape, we only want to consider intersections with surfaces in
421// which the trajectory is leaving the shape. Since the normal vectors to the
422// surface always point outwards from the inside, this means we want the dot
423// product of the trajectory direction v and the normal of the side normals[i]
424// to be positive. Thus, we should specify normSign as +1.0. Otherwise, if
425// we are outside and want to go in, normSign should be set to -1.0.
426// Don't set normSign to zero, or you will get no intersections!
427//
428// * surfTolerance: see notes on argument "surfTolerance" in routine
429// "IntersectSidePlane".
430// ----HOWEVER---- We should *not* apply this surface tolerance if the
431// starting point is not within phi or z of the surface. Specifically,
432// if the starting point p angle in x/y places it on a separate side from the
433// intersection or if the starting point p is outside the z bounds of the
434// segment, surfTolerance must be ignored or we should *always* accept the
435// intersection!
436// This is simply because the sides do not have infinite extent.
437//
438//
439G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p,
440 const G4ThreeVector &v,
441 G4bool outgoing,
442 G4double surfTolerance,
443 G4double &distance,
444 G4double &distFromSurface,
445 G4ThreeVector &normal,
446 G4bool &isAllBehind )
447{
448 G4double normSign = outgoing ? +1 : -1;
449
450 //
451 // ------------------TO BE IMPLEMENTED---------------------
452 // Testing the intersection of individual phi faces is
453 // pretty straight forward. The simple thing therefore is to
454 // form a loop and check them all in sequence.
455 //
456 // But, I worry about one day someone making
457 // a polygon with a thousands sides. A linear search
458 // would not be ideal in such a case.
459 //
460 // So, it would be nice to be able to quickly decide
461 // which face would be intersected. One can make a very
462 // good guess by using the intersection with a cone.
463 // However, this is only reliable in 99% of the cases.
464 //
465 // My solution: make a decent guess as to the one or
466 // two potential faces might get intersected, and then
467 // test them. If we have the wrong face, use the test
468 // to make a better guess.
469 //
470 // Since we might have two guesses, form a queue of
471 // potential intersecting faces. Keep an array of
472 // already tested faces to avoid doing one more than
473 // once.
474 //
475 // Result: at worst, an iterative search. On average,
476 // a little more than two tests would be required.
477 //
478 G4ThreeVector q = p + v;
479
480 G4int face = 0;
481 G4PolyhedraSideVec *vec = vecs;
482 do
483 {
484 //
485 // Correct normal?
486 //
487 G4double dotProd = normSign*v.dot(vec->normal);
488 if (dotProd <= 0) continue;
489
490 //
491 // Is this face in front of the point along the trajectory?
492 //
493 G4ThreeVector delta = p - vec->center;
494 distFromSurface = -normSign*delta.dot(vec->normal);
495
496 if (distFromSurface < -surfTolerance) continue;
497
498 //
499 // phi
500 // c -------- d ^
501 // | | |
502 // a -------- b +---> r/z
503 //
504 //
505 // Do we remain on this particular segment?
506 //
507 G4ThreeVector qc = q - vec->edges[1]->corner[0];
508 G4ThreeVector qd = q - vec->edges[1]->corner[1];
509
510 if (normSign*qc.cross(qd).dot(v) < 0) continue;
511
512 G4ThreeVector qa = q - vec->edges[0]->corner[0];
513 G4ThreeVector qb = q - vec->edges[0]->corner[1];
514
515 if (normSign*qa.cross(qb).dot(v) > 0) continue;
516
517 //
518 // We found the one and only segment we might be intersecting.
519 // Do we remain within r/z bounds?
520 //
521
522 if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false;
523 if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false;
524
525 //
526 // We allow the face to be slightly behind the trajectory
527 // (surface tolerance) only if the point p is within
528 // the vicinity of the face
529 //
530 if (distFromSurface < 0)
531 {
532 G4ThreeVector ps = p - vec->center;
533
534 G4double rz = ps.dot(vec->surfRZ);
535 if (std::fabs(rz) > lenRZ+surfTolerance) return false;
536
537 G4double pp = ps.dot(vec->surfPhi);
538 if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false;
539 }
540
541
542 //
543 // Intersection found. Return answer.
544 //
545 distance = distFromSurface/dotProd;
546 normal = vec->normal;
547 isAllBehind = allBehind;
548 return true;
549 } while( ++vec, ++face < numSide );
550
551 //
552 // Oh well. Better luck next time.
553 //
554 return false;
555}
556
557
558G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing )
559{
560 G4double normSign = outgoing ? -1 : +1;
561
562 //
563 // Try the closest phi segment first
564 //
565 G4int iPhi = ClosestPhiSegment( GetPhi(p) );
566
567 G4ThreeVector pdotc = p - vecs[iPhi].center;
568 G4double normDist = pdotc.dot(vecs[iPhi].normal);
569
570 if (normSign*normDist > -0.5*kCarTolerance)
571 {
572 return DistanceAway( p, vecs[iPhi], &normDist );
573 }
574
575 //
576 // Now we have an interesting problem... do we try to find the
577 // closest facing side??
578 //
579 // Considered carefully, the answer is no. We know that if we
580 // are asking for the distance out, we are supposed to be inside,
581 // and vice versa.
582 //
583
584 return kInfinity;
585}
586
587
588//
589// Inside
590//
591EInside G4PolyhedraSide::Inside( const G4ThreeVector &p,
592 G4double tolerance,
593 G4double *bestDistance )
594{
595 //
596 // Which phi segment is closest to this point?
597 //
598 G4int iPhi = ClosestPhiSegment( GetPhi(p) );
599
600 G4double norm;
601
602 //
603 // Get distance to this segment
604 //
605 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
606
607 //
608 // Use distance along normal to decide return value
609 //
610 if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) )
611 return kSurface;
612 else if (norm < 0)
613 return kInside;
614 else
615 return kOutside;
616}
617
618
619//
620// Normal
621//
622G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p,
623 G4double *bestDistance )
624{
625 //
626 // Which phi segment is closest to this point?
627 //
628 G4int iPhi = ClosestPhiSegment( GetPhi(p) );
629
630 //
631 // Get distance to this segment
632 //
633 G4double norm;
634 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
635
636 return vecs[iPhi].normal;
637}
638
639
640//
641// Extent
642//
643G4double G4PolyhedraSide::Extent( const G4ThreeVector axis )
644{
645 if (axis.perp2() < DBL_MIN)
646 {
647 //
648 // Special case
649 //
650 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
651 }
652
653 G4int iPhi, i1, i2;
654 G4double best;
655 G4ThreeVector *list[4];
656
657 //
658 // Which phi segment, if any, does the axis belong to
659 //
660 iPhi = PhiSegment( GetPhi(axis) );
661
662 if (iPhi < 0)
663 {
664 //
665 // No phi segment? Check front edge of first side and
666 // last edge of second side
667 //
668 i1 = 0; i2 = numSide-1;
669 }
670 else
671 {
672 //
673 // Check all corners of matching phi side
674 //
675 i1 = iPhi; i2 = iPhi;
676 }
677
678 list[0] = vecs[i1].edges[0]->corner;
679 list[1] = vecs[i1].edges[0]->corner+1;
680 list[2] = vecs[i2].edges[1]->corner;
681 list[3] = vecs[i2].edges[1]->corner+1;
682
683 //
684 // Who's biggest?
685 //
686 best = -kInfinity;
687 G4ThreeVector **vec = list;
688 do
689 {
690 G4double answer = (*vec)->dot(axis);
691 if (answer > best) best = answer;
692 } while( ++vec < list+4 );
693
694 return best;
695}
696
697
698//
699// CalculateExtent
700//
701// See notes in G4VCSGface
702//
703void G4PolyhedraSide::CalculateExtent( const EAxis axis,
704 const G4VoxelLimits &voxelLimit,
705 const G4AffineTransform &transform,
706 G4SolidExtentList &extentList )
707{
708 //
709 // Loop over all sides
710 //
711 G4PolyhedraSideVec *vec = vecs;
712 do
713 {
714 //
715 // Fill our polygon with the four corners of
716 // this side, after the specified transformation
717 //
718 G4ClippablePolygon polygon;
719
720 polygon.AddVertexInOrder(transform.
721 TransformPoint(vec->edges[0]->corner[0]));
722 polygon.AddVertexInOrder(transform.
723 TransformPoint(vec->edges[0]->corner[1]));
724 polygon.AddVertexInOrder(transform.
725 TransformPoint(vec->edges[1]->corner[1]));
726 polygon.AddVertexInOrder(transform.
727 TransformPoint(vec->edges[1]->corner[0]));
728
729 //
730 // Get extent
731 //
732 if (polygon.PartialClip( voxelLimit, axis ))
733 {
734 //
735 // Get dot product of normal along target axis
736 //
737 polygon.SetNormal( transform.TransformAxis(vec->normal) );
738
739 extentList.AddSurface( polygon );
740 }
741 } while( ++vec < vecs+numSide );
742
743 return;
744}
745
746
747//
748// IntersectSidePlane
749//
750// Decide if a line correctly intersects one side plane of our segment.
751// It is assumed that the correct side has been chosen, and thus only
752// the z bounds (of the entire segment) are checked.
753//
754// normSign - To be multiplied against normal:
755// = +1.0 normal is unchanged
756// = -1.0 normal is reversed (now points inward)
757//
758// Arguments:
759// p - (in) Point
760// v - (in) Direction
761// vec - (in) Description record of the side plane
762// normSign - (in) Sign (+/- 1) to apply to normal
763// surfTolerance - (in) Surface tolerance (generally > 0, see below)
764// distance - (out) Distance along v to intersection
765// distFromSurface - (out) Distance from surface normal
766//
767// Notes:
768// surfTolerance - Used to decide if a point is behind the surface,
769// a point is allow to be -surfTolerance behind the
770// surface (as measured along the normal), but *only*
771// if the point is within the r/z bounds + surfTolerance
772// of the segment.
773//
774G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p,
775 const G4ThreeVector &v,
776 const G4PolyhedraSideVec vec,
777 G4double normSign,
778 G4double surfTolerance,
779 G4double &distance,
780 G4double &distFromSurface )
781{
782 //
783 // Correct normal? Here we have straight sides, and can safely ignore
784 // intersections where the dot product with the normal is zero.
785 //
786 G4double dotProd = normSign*v.dot(vec.normal);
787
788 if (dotProd <= 0) return false;
789
790 //
791 // Calculate distance to surface. If the side is too far
792 // behind the point, we must reject it.
793 //
794 G4ThreeVector delta = p - vec.center;
795 distFromSurface = -normSign*delta.dot(vec.normal);
796
797 if (distFromSurface < -surfTolerance) return false;
798
799 //
800 // Calculate precise distance to intersection with the side
801 // (along the trajectory, not normal to the surface)
802 //
803 distance = distFromSurface/dotProd;
804
805 //
806 // Do we fall off the r/z extent of the segment?
807 //
808 // Calculate this very, very carefully! Why?
809 // 1. If a RZ end is at R=0, you can't miss!
810 // 2. If you just fall off in RZ, the answer must
811 // be consistent with adjacent G4PolyhedraSide faces.
812 // (2) implies that only variables used by other G4PolyhedraSide
813 // faces may be used, which includes only: p, v, and the edge corners.
814 // It also means that one side is a ">" or "<", which the other
815 // must be ">=" or "<=". Fortunately, this isn't a new problem.
816 // The solution below I borrowed from Joseph O'Rourke,
817 // "Computational Geometry in C (Second Edition)"
818 // See: http://cs.smith.edu/~orourke/
819 //
820 G4ThreeVector ic = p + distance*v - vec.center;
821 G4double atRZ = vec.surfRZ.dot(ic);
822
823 if (atRZ < 0)
824 {
825 if (r[0]==0) return true; // Can't miss!
826
827 if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile.
828
829 G4ThreeVector q = p + v;
830 G4ThreeVector qa = q - vec.edges[0]->corner[0],
831 qb = q - vec.edges[1]->corner[0];
832 G4ThreeVector qacb = qa.cross(qb);
833 if (normSign*qacb.dot(v) < 0) return false;
834
835 if (distFromSurface < 0)
836 {
837 if (atRZ < -lenRZ-surfTolerance) return false;
838 }
839 }
840 else if (atRZ > 0)
841 {
842 if (r[1]==0) return true; // Can't miss!
843
844 if (atRZ > lenRZ*1.2) return false; // Missed by a mile
845
846 G4ThreeVector q = p + v;
847 G4ThreeVector qa = q - vec.edges[0]->corner[1],
848 qb = q - vec.edges[1]->corner[1];
849 G4ThreeVector qacb = qa.cross(qb);
850 if (normSign*qacb.dot(v) >= 0) return false;
851
852 if (distFromSurface < 0)
853 {
854 if (atRZ > lenRZ+surfTolerance) return false;
855 }
856 }
857
858 return true;
859}
860
861
862//
863// LineHitsSegments
864//
865// Calculate which phi segments a line intersects in three dimensions.
866// No check is made as to whether the intersections are within the z bounds of
867// the segment.
868//
869G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p,
870 const G4ThreeVector &v,
871 G4int *i1, G4int *i2 )
872{
873 G4double s1, s2;
874 //
875 // First, decide if and where the line intersects the cone
876 //
877 G4int n = cone->LineHitsCone( p, v, &s1, &s2 );
878
879 if (n==0) return 0;
880
881 //
882 // Try first intersection.
883 //
884 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) );
885 if (n==1)
886 {
887 return (*i1 < 0) ? 0 : 1;
888 }
889
890 //
891 // Try second intersection
892 //
893 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) );
894 if (*i1 == *i2) return 0;
895
896 if (*i1 < 0)
897 {
898 if (*i2 < 0) return 0;
899 *i1 = *i2;
900 return 1;
901 }
902
903 if (*i2 < 0) return 1;
904
905 return 2;
906}
907
908
909//
910// ClosestPhiSegment
911//
912// Decide which phi segment is closest in phi to the point.
913// The result is the same as PhiSegment if there is no phi opening.
914//
915G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 )
916{
917 G4int iPhi = PhiSegment( phi0 );
918 if (iPhi >= 0) return iPhi;
919
920 //
921 // Boogers! The points falls inside the phi segment.
922 // Look for the closest point: the start, or end
923 //
924 G4double phi = phi0;
925
926 while( phi < startPhi ) phi += twopi;
927 G4double d1 = phi-endPhi;
928
929 while( phi > startPhi ) phi -= twopi;
930 G4double d2 = startPhi-phi;
931
932 return (d2 < d1) ? 0 : numSide-1;
933}
934
935
936//
937// PhiSegment
938//
939// Decide which phi segment an angle belongs to, counting from zero.
940// A value of -1 indicates that the phi value is outside the shape
941// (only possible if phiTotal < 360 degrees).
942//
943G4int G4PolyhedraSide::PhiSegment( G4double phi0 )
944{
945 //
946 // How far are we from phiStart? Come up with a positive answer
947 // that is less than 2*PI
948 //
949 G4double phi = phi0 - startPhi;
950 while( phi < 0 ) phi += twopi;
951 while( phi > twopi ) phi -= twopi;
952
953 //
954 // Divide
955 //
956 G4int answer = (G4int)(phi/deltaPhi);
957
958 if (answer >= numSide)
959 {
960 if (phiIsOpen)
961 {
962 return -1; // Looks like we missed
963 }
964 else
965 {
966 answer = numSide-1; // Probably just roundoff
967 }
968 }
969
970 return answer;
971}
972
973
974//
975// GetPhi
976//
977// Calculate Phi for a given 3-vector (point), if not already cached for the
978// same point, in the attempt to avoid consecutive computation of the same
979// quantity
980//
981G4double G4PolyhedraSide::GetPhi( const G4ThreeVector& p )
982{
983 G4double val=0.;
984
985 if (fPhi.first != p)
986 {
987 val = p.phi();
988 fPhi.first = p;
989 fPhi.second = val;
990 }
991 else
992 {
993 val = fPhi.second;
994 }
995 return val;
996}
997
998
999//
1000// DistanceToOneSide
1001//
1002// Arguments:
1003// p - (in) Point to check
1004// vec - (in) vector set of this side
1005// normDist - (out) distance normal to the side or edge, as appropriate, signed
1006// Return value = total distance from the side
1007//
1008G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p,
1009 const G4PolyhedraSideVec &vec,
1010 G4double *normDist )
1011{
1012 G4ThreeVector pc = p - vec.center;
1013
1014 //
1015 // Get normal distance
1016 //
1017 *normDist = vec.normal.dot(pc);
1018
1019 //
1020 // Add edge penalty
1021 //
1022 return DistanceAway( p, vec, normDist );
1023}
1024
1025
1026//
1027// DistanceAway
1028//
1029// Add distance from side edges, if necesssary, to total distance,
1030// and updates normDist appropriate depending on edge normals.
1031//
1032G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p,
1033 const G4PolyhedraSideVec &vec,
1034 G4double *normDist )
1035{
1036 G4double distOut2;
1037 G4ThreeVector pc = p - vec.center;
1038 G4double distFaceNorm = *normDist;
1039
1040 //
1041 // Okay, are we inside bounds?
1042 //
1043 G4double pcDotRZ = pc.dot(vec.surfRZ);
1044 G4double pcDotPhi = pc.dot(vec.surfPhi);
1045
1046 //
1047 // Go through all permutations.
1048 // Phi
1049 // | | ^
1050 // B | H | E |
1051 // ------[1]------------[3]----- |
1052 // |XXXXXXXXXXXXXX| +----> RZ
1053 // C |XXXXXXXXXXXXXX| F
1054 // |XXXXXXXXXXXXXX|
1055 // ------[0]------------[2]----
1056 // A | G | D
1057 // | |
1058 //
1059 // It's real messy, but at least it's quick
1060 //
1061
1062 if (pcDotRZ < -lenRZ)
1063 {
1064 G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1];
1065 G4double distOutZ = pcDotRZ+lenRZ;
1066 //
1067 // Below in RZ
1068 //
1069 if (pcDotPhi < -lenPhiZ)
1070 {
1071 //
1072 // ...and below in phi. Find distance to point (A)
1073 //
1074 G4double distOutPhi = pcDotPhi+lenPhiZ;
1075 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1076 G4ThreeVector pa = p - vec.edges[0]->corner[0];
1077 *normDist = pa.dot(vec.edges[0]->cornNorm[0]);
1078 }
1079 else if (pcDotPhi > lenPhiZ)
1080 {
1081 //
1082 // ...and above in phi. Find distance to point (B)
1083 //
1084 G4double distOutPhi = pcDotPhi-lenPhiZ;
1085 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1086 G4ThreeVector pb = p - vec.edges[1]->corner[0];
1087 *normDist = pb.dot(vec.edges[1]->cornNorm[0]);
1088 }
1089 else
1090 {
1091 //
1092 // ...and inside in phi. Find distance to line (C)
1093 //
1094 G4ThreeVector pa = p - vec.edges[0]->corner[0];
1095 distOut2 = distOutZ*distOutZ;
1096 *normDist = pa.dot(vec.edgeNorm[0]);
1097 }
1098 }
1099 else if (pcDotRZ > lenRZ)
1100 {
1101 G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1];
1102 G4double distOutZ = pcDotRZ-lenRZ;
1103 //
1104 // Above in RZ
1105 //
1106 if (pcDotPhi < -lenPhiZ)
1107 {
1108 //
1109 // ...and below in phi. Find distance to point (D)
1110 //
1111 G4double distOutPhi = pcDotPhi+lenPhiZ;
1112 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1113 G4ThreeVector pd = p - vec.edges[0]->corner[1];
1114 *normDist = pd.dot(vec.edges[0]->cornNorm[1]);
1115 }
1116 else if (pcDotPhi > lenPhiZ)
1117 {
1118 //
1119 // ...and above in phi. Find distance to point (E)
1120 //
1121 G4double distOutPhi = pcDotPhi-lenPhiZ;
1122 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1123 G4ThreeVector pe = p - vec.edges[1]->corner[1];
1124 *normDist = pe.dot(vec.edges[1]->cornNorm[1]);
1125 }
1126 else
1127 {
1128 //
1129 // ...and inside in phi. Find distance to line (F)
1130 //
1131 distOut2 = distOutZ*distOutZ;
1132 G4ThreeVector pd = p - vec.edges[0]->corner[1];
1133 *normDist = pd.dot(vec.edgeNorm[1]);
1134 }
1135 }
1136 else
1137 {
1138 G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1];
1139 //
1140 // We are inside RZ bounds
1141 //
1142 if (pcDotPhi < -lenPhiZ)
1143 {
1144 //
1145 // ...and below in phi. Find distance to line (G)
1146 //
1147 G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ);
1148 distOut2 = distOut*distOut;
1149 G4ThreeVector pd = p - vec.edges[0]->corner[1];
1150 *normDist = pd.dot(vec.edges[0]->normal);
1151 }
1152 else if (pcDotPhi > lenPhiZ)
1153 {
1154 //
1155 // ...and above in phi. Find distance to line (H)
1156 //
1157 G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ);
1158 distOut2 = distOut*distOut;
1159 G4ThreeVector pe = p - vec.edges[1]->corner[1];
1160 *normDist = pe.dot(vec.edges[1]->normal);
1161 }
1162 else
1163 {
1164 //
1165 // Inside bounds! No penalty.
1166 //
1167 return std::fabs(distFaceNorm);
1168 }
1169 }
1170 return std::sqrt( distFaceNorm*distFaceNorm + distOut2 );
1171}
1172
1173
1174//
1175// Calculation of surface area of a triangle.
1176// At the same time a random point in the triangle is given
1177//
1178G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1,
1179 G4ThreeVector p2,
1180 G4ThreeVector p3,
1181 G4ThreeVector *p4 )
1182{
1183 G4ThreeVector v, w;
1184
1185 v = p3 - p1;
1186 w = p1 - p2;
1187 G4double lambda1 = G4UniformRand();
1188 G4double lambda2 = lambda1*G4UniformRand();
1189
1190 *p4=p2 + lambda1*w + lambda2*v;
1191 return 0.5*(v.cross(w)).mag();
1192}
1193
1194
1195//
1196// GetPointOnPlane
1197//
1198// Auxiliary method for GetPointOnSurface()
1199//
1200G4ThreeVector
1201G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1,
1202 G4ThreeVector p2, G4ThreeVector p3,
1203 G4double *Area )
1204{
1205 G4double chose,aOne,aTwo;
1206 G4ThreeVector point1,point2;
1207 aOne = SurfaceTriangle(p0,p1,p2,&point1);
1208 aTwo = SurfaceTriangle(p2,p3,p0,&point2);
1209 *Area= aOne+aTwo;
1210
1211 chose = G4UniformRand()*(aOne+aTwo);
1212 if( (chose>=0.) && (chose < aOne) )
1213 {
1214 return (point1);
1215 }
1216 return (point2);
1217}
1218
1219
1220//
1221// SurfaceArea()
1222//
1223G4double G4PolyhedraSide::SurfaceArea()
1224{
1225 if( fSurfaceArea==0. )
1226 {
1227 // Define the variables
1228 //
1229 G4double area,areas;
1230 G4ThreeVector point1;
1231 G4ThreeVector v1,v2,v3,v4;
1232 G4PolyhedraSideVec *vec = vecs;
1233 areas=0.;
1234
1235 // Do a loop on all SideEdge
1236 //
1237 do
1238 {
1239 // Define 4points for a Plane or Triangle
1240 //
1241 G4ThreeVector v1=vec->edges[0]->corner[0];
1242 G4ThreeVector v2=vec->edges[0]->corner[1];
1243 G4ThreeVector v3=vec->edges[1]->corner[1];
1244 G4ThreeVector v4=vec->edges[1]->corner[0];
1245 point1=GetPointOnPlane(v1,v2,v3,v4,&area);
1246 areas+=area;
1247 } while( ++vec < vecs + numSide);
1248
1249 fSurfaceArea=areas;
1250 }
1251 return fSurfaceArea;
1252}
1253
1254
1255//
1256// GetPointOnFace()
1257//
1258G4ThreeVector G4PolyhedraSide::GetPointOnFace()
1259{
1260 // Define the variables
1261 //
1262 std::vector<G4double>areas;
1263 std::vector<G4ThreeVector>points;
1264 G4double area=0;
1265 G4double result1;
1266 G4ThreeVector point1;
1267 G4ThreeVector v1,v2,v3,v4;
1268 G4PolyhedraSideVec *vec = vecs;
1269
1270 // Do a loop on all SideEdge
1271 //
1272 do
1273 {
1274 // Define 4points for a Plane or Triangle
1275 //
1276 G4ThreeVector v1=vec->edges[0]->corner[0];
1277 G4ThreeVector v2=vec->edges[0]->corner[1];
1278 G4ThreeVector v3=vec->edges[1]->corner[1];
1279 G4ThreeVector v4=vec->edges[1]->corner[0];
1280 point1=GetPointOnPlane(v1,v2,v3,v4,&result1);
1281 points.push_back(point1);
1282 areas.push_back(result1);
1283 area+=result1;
1284 } while( ++vec < vecs+numSide );
1285
1286 // Choose randomly one of the surfaces and point on it
1287 //
1288 G4double chose = area*G4UniformRand();
1289 G4double Achose1,Achose2;
1290 Achose1=0;Achose2=0.;
1291 G4int i=0;
1292 do
1293 {
1294 Achose2+=areas[i];
1295 if(chose>=Achose1 && chose<Achose2)
1296 {
1297 point1=points[i] ; break;
1298 }
1299 i++; Achose1=Achose2;
1300 } while( i<numSide );
1301
1302 return point1;
1303}
Note: See TracBrowser for help on using the repository browser.