| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration and of QinetiQ Ltd, *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4TessellatedGeometryAlgorithms.cc,v 1.5 2007/12/12 16:51:12 gcosmo Exp $
|
|---|
| 27 | // GEANT4 tag $Name: HEAD $
|
|---|
| 28 | //
|
|---|
| 29 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 30 | //
|
|---|
| 31 | // MODULE: G4TessellatedGeometryAlgorithms.cc
|
|---|
| 32 | //
|
|---|
| 33 | // Date: 07/08/2005
|
|---|
| 34 | // Author: Rickard Holmberg & Pete Truscott
|
|---|
| 35 | // Organisation: QinetiQ Ltd, UK (PT)
|
|---|
| 36 | // Customer: ESA-ESTEC / TEC-EES
|
|---|
| 37 | // Contract:
|
|---|
| 38 | //
|
|---|
| 39 | // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 40 | //
|
|---|
| 41 | // CHANGE HISTORY
|
|---|
| 42 | // --------------
|
|---|
| 43 | //
|
|---|
| 44 | // 07 August 2007, P R Truscott, QinetiQ Ltd, UK - Created, with member
|
|---|
| 45 | // functions based on the work of Rickard Holmberg.
|
|---|
| 46 | //
|
|---|
| 47 | // 26 September 2007
|
|---|
| 48 | // P R Truscott, qinetiQ Ltd, UK
|
|---|
| 49 | // Updated to assign values of location array, not update
|
|---|
| 50 | // just the pointer.
|
|---|
| 51 | //
|
|---|
| 52 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 53 |
|
|---|
| 54 | #include "G4TessellatedGeometryAlgorithms.hh"
|
|---|
| 55 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 56 | //
|
|---|
| 57 | // Pointer to single instance of class.
|
|---|
| 58 | //
|
|---|
| 59 | G4TessellatedGeometryAlgorithms* G4TessellatedGeometryAlgorithms::fInstance = 0;
|
|---|
| 60 |
|
|---|
| 61 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 62 | //
|
|---|
| 63 | // G4TessellatedGeometryAlgorithms
|
|---|
| 64 | //
|
|---|
| 65 | // Constructor doesn't need to do anything since this class just allows access
|
|---|
| 66 | // to the geometric algorithms contained in member functions.
|
|---|
| 67 | //
|
|---|
| 68 | G4TessellatedGeometryAlgorithms::G4TessellatedGeometryAlgorithms ()
|
|---|
| 69 | {
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 73 | //
|
|---|
| 74 | // GetInstance
|
|---|
| 75 | //
|
|---|
| 76 | // This is the access point for this singleton.
|
|---|
| 77 | //
|
|---|
| 78 | G4TessellatedGeometryAlgorithms* G4TessellatedGeometryAlgorithms::GetInstance()
|
|---|
| 79 | {
|
|---|
| 80 | static G4TessellatedGeometryAlgorithms worldStdGeom;
|
|---|
| 81 | if (!fInstance)
|
|---|
| 82 | {
|
|---|
| 83 | fInstance = &worldStdGeom;
|
|---|
| 84 | }
|
|---|
| 85 | return fInstance;
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 89 | //
|
|---|
| 90 | // IntersectLineAndTriangle2D
|
|---|
| 91 | //
|
|---|
| 92 | // Determines whether there is an intersection between a line defined
|
|---|
| 93 | // by r = p + s.v and a triangle defined by verticies P0, P0+E0 and P0+E1.
|
|---|
| 94 | //
|
|---|
| 95 | // Here:
|
|---|
| 96 | // p = 2D vector
|
|---|
| 97 | // s = scaler on [0,infinity)
|
|---|
| 98 | // v = 2D vector
|
|---|
| 99 | // P0, E0 and E1 are 2D vectors
|
|---|
| 100 | // Information about where the intersection occurs is returned in the
|
|---|
| 101 | // variable location.
|
|---|
| 102 | //
|
|---|
| 103 | // This is based on the work of Rickard Holmberg.
|
|---|
| 104 | //
|
|---|
| 105 | G4bool G4TessellatedGeometryAlgorithms::IntersectLineAndTriangle2D (
|
|---|
| 106 | const G4TwoVector p, const G4TwoVector v,
|
|---|
| 107 | const G4TwoVector P0, const G4TwoVector E0, const G4TwoVector E1,
|
|---|
| 108 | G4TwoVector location[2])
|
|---|
| 109 | {
|
|---|
| 110 | G4TwoVector loc0[2];
|
|---|
| 111 | G4int e0i = IntersectLineAndLineSegment2D (p,v,P0,E0,loc0);
|
|---|
| 112 | if (e0i == 2)
|
|---|
| 113 | {
|
|---|
| 114 | location[0] = loc0[0];
|
|---|
| 115 | location[1] = loc0[1];
|
|---|
| 116 | return true;
|
|---|
| 117 | }
|
|---|
| 118 |
|
|---|
| 119 | G4TwoVector loc1[2];
|
|---|
| 120 | G4int e1i = IntersectLineAndLineSegment2D (p,v,P0,E1,loc1);
|
|---|
| 121 | if (e1i == 2)
|
|---|
| 122 | {
|
|---|
| 123 | location[0] = loc1[0];
|
|---|
| 124 | location[1] = loc1[1];
|
|---|
| 125 | return true;
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | if ((e0i == 1) && (e1i == 1))
|
|---|
| 129 | {
|
|---|
| 130 | if ((loc0[0]-p).mag2() < (loc1[0]-p).mag2())
|
|---|
| 131 | {
|
|---|
| 132 | location[0] = loc0[0];
|
|---|
| 133 | location[1] = loc1[0];
|
|---|
| 134 | }
|
|---|
| 135 | else
|
|---|
| 136 | {
|
|---|
| 137 | location[0] = loc1[0];
|
|---|
| 138 | location[1] = loc0[0];
|
|---|
| 139 | }
|
|---|
| 140 | return true;
|
|---|
| 141 | }
|
|---|
| 142 |
|
|---|
| 143 | G4TwoVector P1 = P0 + E0;
|
|---|
| 144 | G4TwoVector DE = E1 - E0;
|
|---|
| 145 | G4TwoVector loc2[2];
|
|---|
| 146 | G4int e2i = IntersectLineAndLineSegment2D (p,v,P1,DE,loc2);
|
|---|
| 147 | if (e2i == 2)
|
|---|
| 148 | {
|
|---|
| 149 | location[0] = loc2[0];
|
|---|
| 150 | location[1] = loc2[1];
|
|---|
| 151 | return true;
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 | if ((e0i == 0) && (e1i == 0) && (e2i == 0)) { return false; }
|
|---|
| 155 |
|
|---|
| 156 | if ((e0i == 1) && (e2i == 1))
|
|---|
| 157 | {
|
|---|
| 158 | if ((loc0[0]-p).mag2() < (loc2[0]-p).mag2())
|
|---|
| 159 | {
|
|---|
| 160 | location[0] = loc0[0];
|
|---|
| 161 | location[1] = loc2[0];
|
|---|
| 162 | }
|
|---|
| 163 | else
|
|---|
| 164 | {
|
|---|
| 165 | location[0] = loc2[0];
|
|---|
| 166 | location[1] = loc0[0];
|
|---|
| 167 | }
|
|---|
| 168 | return true;
|
|---|
| 169 | }
|
|---|
| 170 |
|
|---|
| 171 | if ((e1i == 1) && (e2i == 1))
|
|---|
| 172 | {
|
|---|
| 173 | if ((loc1[0]-p).mag2() < (loc2[0]-p).mag2())
|
|---|
| 174 | {
|
|---|
| 175 | location[0] = loc1[0];
|
|---|
| 176 | location[1] = loc2[0];
|
|---|
| 177 | }
|
|---|
| 178 | else
|
|---|
| 179 | {
|
|---|
| 180 | location[0] = loc2[0];
|
|---|
| 181 | location[1] = loc1[0];
|
|---|
| 182 | }
|
|---|
| 183 | return true;
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | return false;
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 190 | //
|
|---|
| 191 | // IntersectLineAndLineSegment2D
|
|---|
| 192 | //
|
|---|
| 193 | // Determines whether there is an intersection between a line defined
|
|---|
| 194 | // by r = P0 + s.D0 and a line-segment with endpoints P1 and P1+D1.
|
|---|
| 195 | // Here:
|
|---|
| 196 | // P0 = 2D vector
|
|---|
| 197 | // s = scaler on [0,infinity)
|
|---|
| 198 | // D0 = 2D vector
|
|---|
| 199 | // P1 and D1 are 2D vectors
|
|---|
| 200 | //
|
|---|
| 201 | // This function returns:
|
|---|
| 202 | // 0 - if there is no intersection;
|
|---|
| 203 | // 1 - if there is a unique intersection;
|
|---|
| 204 | // 2 - if the line and line-segments overlap, and the intersection is a
|
|---|
| 205 | // segment itself.
|
|---|
| 206 | // Information about where the intersection occurs is returned in the
|
|---|
| 207 | // as ??.
|
|---|
| 208 | //
|
|---|
| 209 | // This is based on the work of Rickard Holmberg as well as material published
|
|---|
| 210 | // by Philip J Schneider and David H Eberly, "Geometric Tools for Computer
|
|---|
| 211 | // Graphics," ISBN 1-55860-694-0, pp 244-245, 2003.
|
|---|
| 212 | //
|
|---|
| 213 | G4int G4TessellatedGeometryAlgorithms::IntersectLineAndLineSegment2D (
|
|---|
| 214 | const G4TwoVector P0, const G4TwoVector D0,
|
|---|
| 215 | const G4TwoVector P1, const G4TwoVector D1,
|
|---|
| 216 | G4TwoVector location[2])
|
|---|
| 217 | {
|
|---|
| 218 | G4TwoVector E = P1 - P0;
|
|---|
| 219 | G4double kross = cross(D0,D1);
|
|---|
| 220 | G4double sqrKross = kross * kross;
|
|---|
| 221 | G4double sqrLen0 = D0.mag2();
|
|---|
| 222 | G4double sqrLen1 = D1.mag2();
|
|---|
| 223 | location[0] = G4TwoVector(0.0,0.0);
|
|---|
| 224 | location[1] = G4TwoVector(0.0,0.0);
|
|---|
| 225 |
|
|---|
| 226 | if (sqrKross > DBL_EPSILON * DBL_EPSILON * sqrLen0 * sqrLen1)
|
|---|
| 227 | {
|
|---|
| 228 | //
|
|---|
| 229 | //
|
|---|
| 230 | // The line and line segment are not parallel. Determine if the intersection
|
|---|
| 231 | // is in positive s where r = P0 + s*D0, and for 0<=t<=1 where r = p1 + t*D1.
|
|---|
| 232 | //
|
|---|
| 233 | G4double s = cross(E,D1)/kross;
|
|---|
| 234 | if (s < 0) return 0; // Intersection does not occur for positive s.
|
|---|
| 235 | G4double t = cross(E,D0)/kross;
|
|---|
| 236 | if (t < 0 || t > 1) return 0; // Intersection does not occur on line-segment.
|
|---|
| 237 | //
|
|---|
| 238 | //
|
|---|
| 239 | // Intersection of lines is a single point on the forward-propagating line
|
|---|
| 240 | // defined by r = P0 + s*D0, and the line segment defined by r = p1 + t*D1.
|
|---|
| 241 | //
|
|---|
| 242 | location[0] = P0 + s*D0;
|
|---|
| 243 | return 1;
|
|---|
| 244 | }
|
|---|
| 245 | //
|
|---|
| 246 | //
|
|---|
| 247 | // Line and line segment are parallel. Determine whether they overlap or not.
|
|---|
| 248 | //
|
|---|
| 249 | G4double sqrLenE = E.mag2();
|
|---|
| 250 | kross = cross(E,D0);
|
|---|
| 251 | sqrKross = kross * kross;
|
|---|
| 252 | if (sqrKross > DBL_EPSILON * DBL_EPSILON * sqrLen0 * sqrLenE)
|
|---|
| 253 | {
|
|---|
| 254 | return 0; //Lines are different.
|
|---|
| 255 | }
|
|---|
| 256 | //
|
|---|
| 257 | //
|
|---|
| 258 | // Lines are the same. Test for overlap.
|
|---|
| 259 | //
|
|---|
| 260 | G4double s0 = D0.dot(E)/sqrLen0;
|
|---|
| 261 | G4double s1 = s0 + D0.dot(D1)/sqrLen0;
|
|---|
| 262 | G4double smin = 0.0;
|
|---|
| 263 | G4double smax = 0.0;
|
|---|
| 264 |
|
|---|
| 265 | if (s0 < s1) {smin = s0; smax = s1;}
|
|---|
| 266 | else {smin = s1; smax = s0;}
|
|---|
| 267 |
|
|---|
| 268 | if (smax < 0.0) return 0;
|
|---|
| 269 | else if (smin < 0.0)
|
|---|
| 270 | {
|
|---|
| 271 | location[0] = P0;
|
|---|
| 272 | location[1] = P0 + smax*D0;
|
|---|
| 273 | return 2;
|
|---|
| 274 | }
|
|---|
| 275 | else
|
|---|
| 276 | {
|
|---|
| 277 | location[0] = P0 + smin*D0;
|
|---|
| 278 | location[1] = P0 + smax*D0;
|
|---|
| 279 | return 2;
|
|---|
| 280 | }
|
|---|
| 281 | }
|
|---|