source: trunk/source/geometry/solids/specific/src/G4TriangularFacet.cc@ 1355

Last change on this file since 1355 was 1337, checked in by garnier, 15 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 23.1 KB
RevLine 
[831]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration and of QinetiQ Ltd, *
20// * subject to DEFCON 705 IPR conditions. *
21// * By using, copying, modifying or distributing the software (or *
22// * any work based on the software) you agree to acknowledge its *
23// * use in resulting scientific publications, and indicate your *
24// * acceptance of all terms of the Geant4 Software license. *
25// ********************************************************************
26//
[1315]27// $Id: G4TriangularFacet.cc,v 1.13 2010/04/28 16:21:21 flei Exp $
[1337]28// GEANT4 tag $Name: geant4-09-04-beta-01 $
[831]29//
30// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31//
32// MODULE: G4TriangularFacet.cc
33//
34// Date: 15/06/2005
35// Author: P R Truscott
36// Organisation: QinetiQ Ltd, UK
37// Customer: UK Ministry of Defence : RAO CRP TD Electronic Systems
38// Contract: C/MAT/N03517
39//
40// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41//
42// CHANGE HISTORY
43// --------------
44//
45// 31 October 2004, P R Truscott, QinetiQ Ltd, UK - Created.
46//
47// 01 August 2007 P R Truscott, QinetiQ Ltd, UK
48// Significant modification to correct for errors and enhance
49// based on patches/observations kindly provided by Rickard
50// Holmberg
51//
52// 26 September 2007
53// P R Truscott, QinetiQ Ltd, UK
54// Further chamges implemented to the Intersect member
55// function to correctly treat rays nearly parallel to the
56// plane of the triangle.
57//
[1315]58// 12 April 2010 P R Truscott, QinetiQ, bug fixes to treat optical
59// photon transport, in particular internal reflection
60// at surface.
[831]61// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62
63#include "G4TriangularFacet.hh"
64#include "G4TwoVector.hh"
65#include "globals.hh"
66#include "Randomize.hh"
67
68///////////////////////////////////////////////////////////////////////////////
69//
70// Definition of triangular facet using absolute vectors to vertices.
71// From this for first vector is retained to define the facet location and
72// two relative vectors (E0 and E1) define the sides and orientation of
73// the outward surface normal.
74//
75G4TriangularFacet::G4TriangularFacet (const G4ThreeVector Pt0,
76 const G4ThreeVector vt1, const G4ThreeVector vt2,
77 G4FacetVertexType vertexType)
78 : G4VFacet()
79{
[921]80 tGeomAlg = G4TessellatedGeometryAlgorithms::GetInstance();
[831]81 P0 = Pt0;
82 nVertices = 3;
83 if (vertexType == ABSOLUTE)
84 {
85 P.push_back(vt1);
86 P.push_back(vt2);
87
88 E.push_back(vt1 - P0);
89 E.push_back(vt2 - P0);
90 }
91 else
92 {
93 P.push_back(P0 + vt1);
94 P.push_back(P0 + vt2);
95
96 E.push_back(vt1);
97 E.push_back(vt2);
98 }
99
100 G4double Emag1 = E[0].mag();
101 G4double Emag2 = E[1].mag();
102 G4double Emag3 = (E[1]-E[0]).mag();
103
104 if (Emag1 <= kCarTolerance || Emag2 <= kCarTolerance ||
105 Emag3 <= kCarTolerance)
106 {
107 G4Exception("G4TriangularFacet::G4TriangularFacet()", "InvalidSetup",
108 JustWarning, "Length of sides of facet are too small.");
109 G4cerr << G4endl;
110 G4cerr << "P0 = " << P0 << G4endl;
111 G4cerr << "P1 = " << P[0] << G4endl;
112 G4cerr << "P2 = " << P[1] << G4endl;
113 G4cerr << "Side lengths = P0->P1" << Emag1 << G4endl;
114 G4cerr << "Side lengths = P0->P2" << Emag2 << G4endl;
115 G4cerr << "Side lengths = P1->P2" << Emag3 << G4endl;
116 G4cerr << G4endl;
117
118 isDefined = false;
119 geometryType = "G4TriangularFacet";
120 surfaceNormal = G4ThreeVector(0.0,0.0,0.0);
121 a = 0.0;
122 b = 0.0;
123 c = 0.0;
124 det = 0.0;
125 }
126 else
127 {
128 isDefined = true;
129 geometryType = "G4TriangularFacet";
130 surfaceNormal = E[0].cross(E[1]).unit();
131 a = E[0].mag2();
132 b = E[0].dot(E[1]);
133 c = E[1].mag2();
134 det = std::abs(a*c - b*b);
135
136 sMin = -0.5*kCarTolerance/std::sqrt(a);
137 sMax = 1.0 - sMin;
138 tMin = -0.5*kCarTolerance/std::sqrt(c);
139
140 area = 0.5 * (E[0].cross(E[1])).mag();
141
142// G4ThreeVector vtmp = 0.25 * (E[0] + E[1]);
143 G4double lambda0 = (a-b) * c / (8.0*area*area);
144 G4double lambda1 = (c-b) * a / (8.0*area*area);
145 circumcentre = P0 + lambda0*E[0] + lambda1*E[1];
146 radiusSqr = (circumcentre-P0).mag2();
147 radius = std::sqrt(radiusSqr);
148
149 for (size_t i=0; i<3; i++) { I.push_back(0); }
150 }
151}
152
153///////////////////////////////////////////////////////////////////////////////
154//
155// ~G4TriangularFacet
156//
157// A pretty boring destructor indeed!
158//
159G4TriangularFacet::~G4TriangularFacet ()
160{
161 P.clear();
162 E.clear();
163 I.clear();
164}
165
166///////////////////////////////////////////////////////////////////////////////
167//
168// GetClone
169//
170// Simple member function to generate a diplicate of the triangular facet.
171//
172G4VFacet *G4TriangularFacet::GetClone ()
173{
174 G4TriangularFacet *fc = new G4TriangularFacet (P0, P[0], P[1], ABSOLUTE);
175 G4VFacet *cc = 0;
176 cc = fc;
177 return cc;
178}
179
180///////////////////////////////////////////////////////////////////////////////
181//
182// GetFlippedFacet
183//
184// Member function to generate an identical facet, but with the normal vector
185// pointing at 180 degrees.
186//
187G4TriangularFacet *G4TriangularFacet::GetFlippedFacet ()
188{
189 G4TriangularFacet *flipped = new G4TriangularFacet (P0, P[1], P[0], ABSOLUTE);
190 return flipped;
191}
192
193///////////////////////////////////////////////////////////////////////////////
194//
195// Distance (G4ThreeVector)
196//
197// Determines the vector between p and the closest point on the facet to p.
198// This is based on the algorithm published in "Geometric Tools for Computer
199// Graphics," Philip J Scheider and David H Eberly, Elsevier Science (USA),
200// 2003. at the time of writing, the algorithm is also available in a
201// technical note "Distance between point and triangle in 3D," by David Eberly
202// at http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
203//
204// The by-product is the square-distance sqrDist, which is retained
205// in case needed by the other "Distance" member functions.
206//
207G4ThreeVector G4TriangularFacet::Distance (const G4ThreeVector &p)
208{
209 G4ThreeVector D = P0 - p;
210 G4double d = E[0].dot(D);
211 G4double e = E[1].dot(D);
212 G4double f = D.mag2();
213 G4double s = b*e - c*d;
214 G4double t = b*d - a*e;
215
216 sqrDist = 0.0;
217
218 if (s+t <= det)
219 {
220 if (s < 0.0)
221 {
222 if (t < 0.0)
223 {
224 //
225 // We are in region 4.
226 //
227 if (d < 0.0)
228 {
229 t = 0.0;
230 if (-d >= a) {s = 1.0; sqrDist = a + 2.0*d + f;}
231 else {s = -d/a; sqrDist = d*s + f;}
232 }
233 else
234 {
235 s = 0.0;
236 if (e >= 0.0) {t = 0.0; sqrDist = f;}
237 else if (-e >= c) {t = 1.0; sqrDist = c + 2.0*e + f;}
238 else {t = -e/c; sqrDist = e*t + f;}
239 }
240 }
241 else
242 {
243 //
244 // We are in region 3.
245 //
246 s = 0.0;
247 if (e >= 0.0) {t = 0.0; sqrDist = f;}
248 else if (-e >= c) {t = 1.0; sqrDist = c + 2.0*e + f;}
249 else {t = -e/c; sqrDist = e*t + f;}
250 }
251 }
252 else if (t < 0.0)
253 {
254 //
255 // We are in region 5.
256 //
257 t = 0.0;
258 if (d >= 0.0) {s = 0.0; sqrDist = f;}
259 else if (-d >= a) {s = 1.0; sqrDist = a + 2.0*d + f;}
260 else {s = -d/a; sqrDist = d*s + f;}
261 }
262 else
263 {
264 //
265 // We are in region 0.
266 //
267 s = s / det;
268 t = t / det;
269 sqrDist = s*(a*s + b*t + 2.0*d) + t*(b*s + c*t + 2.0*e) + f;
270 }
271 }
272 else
273 {
274 if (s < 0.0)
275 {
276 //
277 // We are in region 2.
278 //
279 G4double tmp0 = b + d;
280 G4double tmp1 = c + e;
281 if (tmp1 > tmp0)
282 {
283 G4double numer = tmp1 - tmp0;
284 G4double denom = a - 2.0*b + c;
285 if (numer >= denom) {s = 1.0; t = 0.0; sqrDist = a + 2.0*d + f;}
286 else
287 {
288 s = numer/denom;
289 t = 1.0 - s;
290 sqrDist = s*(a*s + b*t +2.0*d) + t*(b*s + c*t + 2.0*e) + f;
291 }
292 }
293 else
294 {
295 s = 0.0;
296 if (tmp1 <= 0.0) {t = 1.0; sqrDist = c + 2.0*e + f;}
297 else if (e >= 0.0) {t = 0.0; sqrDist = f;}
298 else {t = -e/c; sqrDist = e*t + f;}
299 }
300 }
301 else if (t < 0.0)
302 {
303 //
304 // We are in region 6.
305 //
306 G4double tmp0 = b + e;
307 G4double tmp1 = a + d;
308 if (tmp1 > tmp0)
309 {
310 G4double numer = tmp1 - tmp0;
311 G4double denom = a - 2.0*b + c;
312 if (numer >= denom) {t = 1.0; s = 0.0; sqrDist = c + 2.0*e + f;}
313 else
314 {
315 t = numer/denom;
316 s = 1.0 - t;
317 sqrDist = s*(a*s + b*t +2.0*d) + t*(b*s + c*t + 2.0*e) + f;
318 }
319 }
320 else
321 {
322 t = 0.0;
323 if (tmp1 <= 0.0) {s = 1.0; sqrDist = a + 2.0*d + f;}
324 else if (d >= 0.0) {s = 0.0; sqrDist = f;}
325 else {s = -d/a; sqrDist = d*s + f;}
326 }
327 }
328 else
329 //
330 // We are in region 1.
331 //
332 {
333 G4double numer = c + e - b - d;
334 if (numer <= 0.0)
335 {
336 s = 0.0;
337 t = 1.0;
338 sqrDist = c + 2.0*e + f;
339 }
340 else
341 {
342 G4double denom = a - 2.0*b + c;
343 if (numer >= denom) {s = 1.0; t = 0.0; sqrDist = a + 2.0*d + f;}
344 else
345 {
346 s = numer/denom;
347 t = 1.0 - s;
348 sqrDist = s*(a*s + b*t + 2.0*d) + t*(b*s + c*t + 2.0*e) + f;
349 }
350 }
351 }
352 }
353//
354//
[1315]355// Do a check for rounding errors in the distance-squared. It appears that
356// the conventional methods for calculating sqrDist breaks down when very near
357// to or at the surface (as required by transport). We'll therefore also use
358// the magnitude-squared of the vector displacement. (Note that I've also
359// tried to get around this problem by using the existing equations for
[831]360//
[1315]361// sqrDist = function(a,b,c,d,s,t)
362//
363// and use a more accurate addition process which minimises errors and
364// breakdown of cummutitivity [where (A+B)+C != A+(B+C)] but this still
365// doesn't work.
366// Calculation from u = D + s*E[0] + t*E[1] is less efficient, but appears
367// more robust.
368//
[831]369 if (sqrDist < 0.0) { sqrDist = 0.0; }
[1315]370 G4ThreeVector u = D + s*E[0] + t*E[1];
371 G4double u2 = u.mag2();
372//
373//
374// The following (part of the roundoff error check) is from Oliver Merle's
375// updates.
376//
377 if ( sqrDist > u2 ) sqrDist = u2;
[831]378
[1315]379 return u;
[831]380}
381
382///////////////////////////////////////////////////////////////////////////////
383//
384// Distance (G4ThreeVector, G4double)
385//
386// Determines the closest distance between point p and the facet. This makes
387// use of G4ThreeVector G4TriangularFacet::Distance, which stores the
388// square of the distance in variable sqrDist. If approximate methods show
389// the distance is to be greater than minDist, then forget about further
390// computation and return a very large number.
391//
392G4double G4TriangularFacet::Distance (const G4ThreeVector &p,
393 const G4double minDist)
394{
395//
396//
397// Start with quicky test to determine if the surface of the sphere enclosing
398// the triangle is any closer to p than minDist. If not, then don't bother
399// about more accurate test.
400//
401 G4double dist = kInfinity;
402 if ((p-circumcentre).mag()-radius < minDist)
403 {
404//
405//
406// It's possible that the triangle is closer than minDist, so do more accurate
407// assessment.
408//
409 dist = Distance(p).mag();
410// dist = std::sqrt(sqrDist);
411 }
412
413 return dist;
414}
415
416///////////////////////////////////////////////////////////////////////////////
417//
418// Distance (G4ThreeVector, G4double, G4double)
419//
420// Determine the distance to point p. kInfinity is returned if either:
421// (1) outgoing is TRUE and the dot product of the normal vector to the facet
422// and the displacement vector from p to the triangle is negative.
423// (2) outgoing is FALSE and the dot product of the normal vector to the facet
424// and the displacement vector from p to the triangle is positive.
425// If approximate methods show the distance is to be greater than minDist, then
426// forget about further computation and return a very large number.
427//
428// This method has been heavily modified thanks to the valuable comments and
429// corrections of Rickard Holmberg.
430//
431G4double G4TriangularFacet::Distance (const G4ThreeVector &p,
432 const G4double minDist, const G4bool outgoing)
433{
434//
435//
436// Start with quicky test to determine if the surface of the sphere enclosing
437// the triangle is any closer to p than minDist. If not, then don't bother
438// about more accurate test.
439//
440 G4double dist = kInfinity;
441 if ((p-circumcentre).mag()-radius < minDist)
442 {
443//
444//
445// It's possible that the triangle is closer than minDist, so do more accurate
446// assessment.
447//
448 G4ThreeVector v = Distance(p);
449 G4double dist1 = std::sqrt(sqrDist);
450 G4double dir = v.dot(surfaceNormal);
451 G4bool wrongSide = (dir > 0.0 && !outgoing) || (dir < 0.0 && outgoing);
452 if (dist1 <= kCarTolerance*0.5)
453 {
454//
455//
456// Point p is very close to triangle. Check if it's on the wrong side, in
457// which case return distance of 0.0 otherwise .
458//
459 if (wrongSide) dist = 0.0;
460 else dist = dist1;
461 }
462 else if (!wrongSide) dist = dist1;
463 }
464
465 return dist;
466}
467
468///////////////////////////////////////////////////////////////////////////////
469//
470// Extent
471//
472// Calculates the furthest the triangle extends in a particular direction
473// defined by the vector axis.
474//
475G4double G4TriangularFacet::Extent (const G4ThreeVector axis)
476{
477 G4double s = P0.dot(axis);
478 G4double sp = P[0].dot(axis);
479 if (sp > s) s = sp;
480 sp = P[1].dot(axis);
481 if (sp > s) s = sp;
482
483 return s;
484}
485
486///////////////////////////////////////////////////////////////////////////////
487//
488// Intersect
489//
490// Member function to find the next intersection when going from p in the
491// direction of v. If:
492// (1) "outgoing" is TRUE, only consider the face if we are going out through
493// the face.
494// (2) "outgoing" is FALSE, only consider the face if we are going in through
495// the face.
496// Member functions returns TRUE if there is an intersection, FALSE otherwise.
497// Sets the distance (distance along w), distFromSurface (orthogonal distance)
498// and normal.
499//
500// Also considers intersections that happen with negative distance for small
501// distances of distFromSurface = 0.5*kCarTolerance in the wrong direction.
502// This is to detect kSurface without doing a full Inside(p) in
503// G4TessellatedSolid::Distance(p,v) calculation.
504//
505// This member function is thanks the valuable work of Rickard Holmberg. PT.
506// However, "gotos" are the Work of the Devil have been exorcised with
507// extreme prejudice!!
508//
509// IMPORTANT NOTE: These calculations are predicated on v being a unit
510// vector. If G4TessellatedSolid or other classes call this member function
511// with |v| != 1 then there will be errors.
512//
513G4bool G4TriangularFacet::Intersect (const G4ThreeVector &p,
514 const G4ThreeVector &v, G4bool outgoing, G4double &distance,
515 G4double &distFromSurface, G4ThreeVector &normal)
516{
517//
518//
519// Check whether the direction of the facet is consistent with the vector v
520// and the need to be outgoing or ingoing. If inconsistent, disregard and
521// return false.
522//
523 G4double w = v.dot(surfaceNormal);
524 if ((outgoing && (w <-dirTolerance)) || (!outgoing && (w > dirTolerance)))
525 {
526 distance = kInfinity;
527 distFromSurface = kInfinity;
528 normal = G4ThreeVector(0.0,0.0,0.0);
529 return false;
530 }
531//
532//
533// Calculate the orthogonal distance from p to the surface containing the
534// triangle. Then determine if we're on the right or wrong side of the
535// surface (at a distance greater than kCarTolerance) to be consistent with
536// "outgoing".
537//
538 G4ThreeVector D = P0 - p;
539 distFromSurface = D.dot(surfaceNormal);
540 G4bool wrongSide = (outgoing && (distFromSurface < -0.5*kCarTolerance)) ||
541 (!outgoing && (distFromSurface > 0.5*kCarTolerance));
542 if (wrongSide)
543 {
544 distance = kInfinity;
545 distFromSurface = kInfinity;
546 normal = G4ThreeVector(0.0,0.0,0.0);
547 return false;
548 }
549
550 wrongSide = (outgoing && (distFromSurface < 0.0)) ||
551 (!outgoing && (distFromSurface > 0.0));
552 if (wrongSide)
553 {
554//
555//
556// We're slightly on the wrong side of the surface. Check if we're close
557// enough using a precise distance calculation.
558//
559 G4ThreeVector u = Distance(p);
560 if (std::sqrt(sqrDist) <= 0.5*kCarTolerance)
561 {
562//
563//
564// We're very close. Therefore return a small negative number to pretend
565// we intersect.
566//
[1315]567// distance = -0.5*kCarTolerance;
568 distance = 0.0;
[831]569 normal = surfaceNormal;
570 return true;
571 }
572 else
573 {
574//
575//
576// We're close to the surface containing the triangle, but sufficiently
577// far from the triangle, and on the wrong side compared to the directions
578// of the surface normal and v. There is no intersection.
579//
580 distance = kInfinity;
581 distFromSurface = kInfinity;
582 normal = G4ThreeVector(0.0,0.0,0.0);
583 return false;
584 }
585 }
586 if (w < dirTolerance && w > -dirTolerance)
587 {
588//
589//
590// The ray is within the plane of the triangle. Project the problem into 2D
591// in the plane of the triangle. First try to create orthogonal unit vectors
592// mu and nu, where mu is E[0]/|E[0]|. This is kinda like
593// the original algorithm due to Rickard Holmberg, but with better mathematical
594// justification than the original method ... however, beware Rickard's was less
595// time-consuming.
596//
597// Note that vprime is not a unit vector. We need to keep it unnormalised
598// since the values of distance along vprime (s0 and s1) for intersection with
599// the triangle will be used to determine if we cut the plane at the same
600// time.
601//
602 G4ThreeVector mu = E[0].unit();
603 G4ThreeVector nu = surfaceNormal.cross(mu);
604 G4TwoVector pprime(p.dot(mu),p.dot(nu));
605 G4TwoVector vprime(v.dot(mu),v.dot(nu));
606 G4TwoVector P0prime(P0.dot(mu),P0.dot(nu));
607 G4TwoVector E0prime(E[0].mag(),0.0);
608 G4TwoVector E1prime(E[1].dot(mu),E[1].dot(nu));
609
610 G4TwoVector loc[2];
611 if ( tGeomAlg->IntersectLineAndTriangle2D(pprime,vprime,P0prime,
612 E0prime,E1prime,loc) )
613 {
614//
615//
616// There is an intersection between the line and triangle in 2D. Now check
617// which part of the line intersects with the plane containing the triangle
618// in 3D.
619//
620 G4double vprimemag = vprime.mag();
621 G4double s0 = (loc[0] - pprime).mag()/vprimemag;
622 G4double s1 = (loc[1] - pprime).mag()/vprimemag;
623 G4double normDist0 = surfaceNormal.dot(s0*v) - distFromSurface;
624 G4double normDist1 = surfaceNormal.dot(s1*v) - distFromSurface;
625
626 if ((normDist0 < 0.0 && normDist1 < 0.0) ||
627 (normDist0 > 0.0 && normDist1 > 0.0))
628 {
629 distance = kInfinity;
630 distFromSurface = kInfinity;
631 normal = G4ThreeVector(0.0,0.0,0.0);
632 return false;
633 }
634 else
635 {
636 G4double dnormDist = normDist1-normDist0;
637 if (std::abs(dnormDist) < DBL_EPSILON)
638 {
639 distance = s0;
640 normal = surfaceNormal;
641 if (!outgoing) distFromSurface = -distFromSurface;
642 return true;
643 }
644 else
645 {
646 distance = s0 - normDist0*(s1-s0)/dnormDist;
647 normal = surfaceNormal;
648 if (!outgoing) distFromSurface = -distFromSurface;
649 return true;
650 }
651 }
652
653// G4ThreeVector dloc = loc1 - loc0;
654// G4ThreeVector dlocXv = dloc.cross(v);
655// G4double dlocXvmag = dlocXv.mag();
656// if (dloc.mag() <= 0.5*kCarTolerance || dlocXvmag <= DBL_EPSILON)
657// {
658// distance = loc0.mag();
659// normal = surfaceNormal;
660// if (!outgoing) distFromSurface = -distFromSurface;
661// return true;
662// }
663
664// G4ThreeVector loc0Xv = loc0.cross(v);
665// G4ThreeVector loc1Xv = loc1.cross(v);
666// G4double sameDir = -loc0Xv.dot(loc1Xv);
667// if (sameDir < 0.0)
668// {
669// distance = kInfinity;
670// distFromSurface = kInfinity;
671// normal = G4ThreeVector(0.0,0.0,0.0);
672// return false;
673// }
674// else
675// {
676// distance = loc0.mag() + loc0Xv.mag() * dloc.mag()/dlocXvmag;
677// normal = surfaceNormal;
678// if (!outgoing) distFromSurface = -distFromSurface;
679// return true;
680// }
681 }
682 else
683 {
684 distance = kInfinity;
685 distFromSurface = kInfinity;
686 normal = G4ThreeVector(0.0,0.0,0.0);
687 return false;
688 }
689 }
690//
691//
692// Use conventional algorithm to determine the whether there is an
693// intersection. This involves determining the point of intersection of the
694// line with the plane containing the triangle, and then calculating if the
695// point is within the triangle.
696//
697 distance = distFromSurface / w;
698 G4ThreeVector pp = p + v*distance;
699 G4ThreeVector DD = P0 - pp;
700 G4double d = E[0].dot(DD);
701 G4double e = E[1].dot(DD);
702 G4double s = b*e - c*d;
703 G4double t = b*d - a*e;
704
705 if (s < 0.0 || t < 0.0 || s+t > det)
706 {
707//
708//
709// The intersection is outside of the triangle.
710//
711 distance = kInfinity;
712 distFromSurface = kInfinity;
713 normal = G4ThreeVector(0.0,0.0,0.0);
714 return false;
715 }
716 else
717 {
718//
719//
720// There is an intersection. Now we only need to set the surface normal.
721//
722 normal = surfaceNormal;
723 if (!outgoing) distFromSurface = -distFromSurface;
724 return true;
725 }
726}
727
728////////////////////////////////////////////////////////////////////////
729//
730// GetPointOnFace
731//
732// Auxiliary method for get a random point on surface
733
734G4ThreeVector G4TriangularFacet::GetPointOnFace() const
735{
[921]736 G4double alpha = CLHEP::RandFlat::shoot(0.,1.);
737 G4double beta = CLHEP::RandFlat::shoot(0.,1);
738 G4double lambda1=alpha*beta;
739 G4double lambda0=alpha-lambda1;
740
[831]741 return (P0 + lambda0*E[0] + lambda1*E[1]);
742}
743
744////////////////////////////////////////////////////////////////////////
745//
746// GetArea
747//
748// Auxiliary method for returning the surface area
749
750G4double G4TriangularFacet::GetArea()
751{
752 return area;
753}
[1315]754////////////////////////////////////////////////////////////////////////
755//
Note: See TracBrowser for help on using the repository browser.