source: trunk/source/geometry/solids/specific/src/G4TriangularFacet.cc@ 1051

Last change on this file since 1051 was 921, checked in by garnier, 17 years ago

en test de gl2ps. Problemes de libraries

File size: 22.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration and of QinetiQ Ltd, *
20// * subject to DEFCON 705 IPR conditions. *
21// * By using, copying, modifying or distributing the software (or *
22// * any work based on the software) you agree to acknowledge its *
23// * use in resulting scientific publications, and indicate your *
24// * acceptance of all terms of the Geant4 Software license. *
25// ********************************************************************
26//
27// $Id: G4TriangularFacet.cc,v 1.12 2008/11/13 08:25:07 gcosmo Exp $
28// GEANT4 tag $Name: geant4-09-02-cand-01 $
29//
30// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31//
32// MODULE: G4TriangularFacet.cc
33//
34// Date: 15/06/2005
35// Author: P R Truscott
36// Organisation: QinetiQ Ltd, UK
37// Customer: UK Ministry of Defence : RAO CRP TD Electronic Systems
38// Contract: C/MAT/N03517
39//
40// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41//
42// CHANGE HISTORY
43// --------------
44//
45// 31 October 2004, P R Truscott, QinetiQ Ltd, UK - Created.
46//
47// 01 August 2007 P R Truscott, QinetiQ Ltd, UK
48// Significant modification to correct for errors and enhance
49// based on patches/observations kindly provided by Rickard
50// Holmberg
51//
52// 26 September 2007
53// P R Truscott, QinetiQ Ltd, UK
54// Further chamges implemented to the Intersect member
55// function to correctly treat rays nearly parallel to the
56// plane of the triangle.
57//
58// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59
60#include "G4TriangularFacet.hh"
61#include "G4TwoVector.hh"
62#include "globals.hh"
63#include "Randomize.hh"
64
65///////////////////////////////////////////////////////////////////////////////
66//
67// Definition of triangular facet using absolute vectors to vertices.
68// From this for first vector is retained to define the facet location and
69// two relative vectors (E0 and E1) define the sides and orientation of
70// the outward surface normal.
71//
72G4TriangularFacet::G4TriangularFacet (const G4ThreeVector Pt0,
73 const G4ThreeVector vt1, const G4ThreeVector vt2,
74 G4FacetVertexType vertexType)
75 : G4VFacet()
76{
77 tGeomAlg = G4TessellatedGeometryAlgorithms::GetInstance();
78 P0 = Pt0;
79 nVertices = 3;
80 if (vertexType == ABSOLUTE)
81 {
82 P.push_back(vt1);
83 P.push_back(vt2);
84
85 E.push_back(vt1 - P0);
86 E.push_back(vt2 - P0);
87 }
88 else
89 {
90 P.push_back(P0 + vt1);
91 P.push_back(P0 + vt2);
92
93 E.push_back(vt1);
94 E.push_back(vt2);
95 }
96
97 G4double Emag1 = E[0].mag();
98 G4double Emag2 = E[1].mag();
99 G4double Emag3 = (E[1]-E[0]).mag();
100
101 if (Emag1 <= kCarTolerance || Emag2 <= kCarTolerance ||
102 Emag3 <= kCarTolerance)
103 {
104 G4Exception("G4TriangularFacet::G4TriangularFacet()", "InvalidSetup",
105 JustWarning, "Length of sides of facet are too small.");
106 G4cerr << G4endl;
107 G4cerr << "P0 = " << P0 << G4endl;
108 G4cerr << "P1 = " << P[0] << G4endl;
109 G4cerr << "P2 = " << P[1] << G4endl;
110 G4cerr << "Side lengths = P0->P1" << Emag1 << G4endl;
111 G4cerr << "Side lengths = P0->P2" << Emag2 << G4endl;
112 G4cerr << "Side lengths = P1->P2" << Emag3 << G4endl;
113 G4cerr << G4endl;
114
115 isDefined = false;
116 geometryType = "G4TriangularFacet";
117 surfaceNormal = G4ThreeVector(0.0,0.0,0.0);
118 a = 0.0;
119 b = 0.0;
120 c = 0.0;
121 det = 0.0;
122 }
123 else
124 {
125 isDefined = true;
126 geometryType = "G4TriangularFacet";
127 surfaceNormal = E[0].cross(E[1]).unit();
128 a = E[0].mag2();
129 b = E[0].dot(E[1]);
130 c = E[1].mag2();
131 det = std::abs(a*c - b*b);
132
133 sMin = -0.5*kCarTolerance/std::sqrt(a);
134 sMax = 1.0 - sMin;
135 tMin = -0.5*kCarTolerance/std::sqrt(c);
136
137 area = 0.5 * (E[0].cross(E[1])).mag();
138
139// G4ThreeVector vtmp = 0.25 * (E[0] + E[1]);
140 G4double lambda0 = (a-b) * c / (8.0*area*area);
141 G4double lambda1 = (c-b) * a / (8.0*area*area);
142 circumcentre = P0 + lambda0*E[0] + lambda1*E[1];
143 radiusSqr = (circumcentre-P0).mag2();
144 radius = std::sqrt(radiusSqr);
145
146 for (size_t i=0; i<3; i++) { I.push_back(0); }
147 }
148}
149
150///////////////////////////////////////////////////////////////////////////////
151//
152// ~G4TriangularFacet
153//
154// A pretty boring destructor indeed!
155//
156G4TriangularFacet::~G4TriangularFacet ()
157{
158 P.clear();
159 E.clear();
160 I.clear();
161}
162
163///////////////////////////////////////////////////////////////////////////////
164//
165// GetClone
166//
167// Simple member function to generate a diplicate of the triangular facet.
168//
169G4VFacet *G4TriangularFacet::GetClone ()
170{
171 G4TriangularFacet *fc = new G4TriangularFacet (P0, P[0], P[1], ABSOLUTE);
172 G4VFacet *cc = 0;
173 cc = fc;
174 return cc;
175}
176
177///////////////////////////////////////////////////////////////////////////////
178//
179// GetFlippedFacet
180//
181// Member function to generate an identical facet, but with the normal vector
182// pointing at 180 degrees.
183//
184G4TriangularFacet *G4TriangularFacet::GetFlippedFacet ()
185{
186 G4TriangularFacet *flipped = new G4TriangularFacet (P0, P[1], P[0], ABSOLUTE);
187 return flipped;
188}
189
190///////////////////////////////////////////////////////////////////////////////
191//
192// Distance (G4ThreeVector)
193//
194// Determines the vector between p and the closest point on the facet to p.
195// This is based on the algorithm published in "Geometric Tools for Computer
196// Graphics," Philip J Scheider and David H Eberly, Elsevier Science (USA),
197// 2003. at the time of writing, the algorithm is also available in a
198// technical note "Distance between point and triangle in 3D," by David Eberly
199// at http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
200//
201// The by-product is the square-distance sqrDist, which is retained
202// in case needed by the other "Distance" member functions.
203//
204G4ThreeVector G4TriangularFacet::Distance (const G4ThreeVector &p)
205{
206 G4ThreeVector D = P0 - p;
207 G4double d = E[0].dot(D);
208 G4double e = E[1].dot(D);
209 G4double f = D.mag2();
210 G4double s = b*e - c*d;
211 G4double t = b*d - a*e;
212
213 sqrDist = 0.0;
214
215 if (s+t <= det)
216 {
217 if (s < 0.0)
218 {
219 if (t < 0.0)
220 {
221 //
222 // We are in region 4.
223 //
224 if (d < 0.0)
225 {
226 t = 0.0;
227 if (-d >= a) {s = 1.0; sqrDist = a + 2.0*d + f;}
228 else {s = -d/a; sqrDist = d*s + f;}
229 }
230 else
231 {
232 s = 0.0;
233 if (e >= 0.0) {t = 0.0; sqrDist = f;}
234 else if (-e >= c) {t = 1.0; sqrDist = c + 2.0*e + f;}
235 else {t = -e/c; sqrDist = e*t + f;}
236 }
237 }
238 else
239 {
240 //
241 // We are in region 3.
242 //
243 s = 0.0;
244 if (e >= 0.0) {t = 0.0; sqrDist = f;}
245 else if (-e >= c) {t = 1.0; sqrDist = c + 2.0*e + f;}
246 else {t = -e/c; sqrDist = e*t + f;}
247 }
248 }
249 else if (t < 0.0)
250 {
251 //
252 // We are in region 5.
253 //
254 t = 0.0;
255 if (d >= 0.0) {s = 0.0; sqrDist = f;}
256 else if (-d >= a) {s = 1.0; sqrDist = a + 2.0*d + f;}
257 else {s = -d/a; sqrDist = d*s + f;}
258 }
259 else
260 {
261 //
262 // We are in region 0.
263 //
264 s = s / det;
265 t = t / det;
266 sqrDist = s*(a*s + b*t + 2.0*d) + t*(b*s + c*t + 2.0*e) + f;
267 }
268 }
269 else
270 {
271 if (s < 0.0)
272 {
273 //
274 // We are in region 2.
275 //
276 G4double tmp0 = b + d;
277 G4double tmp1 = c + e;
278 if (tmp1 > tmp0)
279 {
280 G4double numer = tmp1 - tmp0;
281 G4double denom = a - 2.0*b + c;
282 if (numer >= denom) {s = 1.0; t = 0.0; sqrDist = a + 2.0*d + f;}
283 else
284 {
285 s = numer/denom;
286 t = 1.0 - s;
287 sqrDist = s*(a*s + b*t +2.0*d) + t*(b*s + c*t + 2.0*e) + f;
288 }
289 }
290 else
291 {
292 s = 0.0;
293 if (tmp1 <= 0.0) {t = 1.0; sqrDist = c + 2.0*e + f;}
294 else if (e >= 0.0) {t = 0.0; sqrDist = f;}
295 else {t = -e/c; sqrDist = e*t + f;}
296 }
297 }
298 else if (t < 0.0)
299 {
300 //
301 // We are in region 6.
302 //
303 G4double tmp0 = b + e;
304 G4double tmp1 = a + d;
305 if (tmp1 > tmp0)
306 {
307 G4double numer = tmp1 - tmp0;
308 G4double denom = a - 2.0*b + c;
309 if (numer >= denom) {t = 1.0; s = 0.0; sqrDist = c + 2.0*e + f;}
310 else
311 {
312 t = numer/denom;
313 s = 1.0 - t;
314 sqrDist = s*(a*s + b*t +2.0*d) + t*(b*s + c*t + 2.0*e) + f;
315 }
316 }
317 else
318 {
319 t = 0.0;
320 if (tmp1 <= 0.0) {s = 1.0; sqrDist = a + 2.0*d + f;}
321 else if (d >= 0.0) {s = 0.0; sqrDist = f;}
322 else {s = -d/a; sqrDist = d*s + f;}
323 }
324 }
325 else
326 //
327 // We are in region 1.
328 //
329 {
330 G4double numer = c + e - b - d;
331 if (numer <= 0.0)
332 {
333 s = 0.0;
334 t = 1.0;
335 sqrDist = c + 2.0*e + f;
336 }
337 else
338 {
339 G4double denom = a - 2.0*b + c;
340 if (numer >= denom) {s = 1.0; t = 0.0; sqrDist = a + 2.0*d + f;}
341 else
342 {
343 s = numer/denom;
344 t = 1.0 - s;
345 sqrDist = s*(a*s + b*t + 2.0*d) + t*(b*s + c*t + 2.0*e) + f;
346 }
347 }
348 }
349 }
350//
351//
352// Do a heck for rounding errors in the distance-squared.
353//
354 if (sqrDist < 0.0) { sqrDist = 0.0; }
355
356 return D + s*E[0] + t*E[1];
357}
358
359///////////////////////////////////////////////////////////////////////////////
360//
361// Distance (G4ThreeVector, G4double)
362//
363// Determines the closest distance between point p and the facet. This makes
364// use of G4ThreeVector G4TriangularFacet::Distance, which stores the
365// square of the distance in variable sqrDist. If approximate methods show
366// the distance is to be greater than minDist, then forget about further
367// computation and return a very large number.
368//
369G4double G4TriangularFacet::Distance (const G4ThreeVector &p,
370 const G4double minDist)
371{
372//
373//
374// Start with quicky test to determine if the surface of the sphere enclosing
375// the triangle is any closer to p than minDist. If not, then don't bother
376// about more accurate test.
377//
378 G4double dist = kInfinity;
379 if ((p-circumcentre).mag()-radius < minDist)
380 {
381//
382//
383// It's possible that the triangle is closer than minDist, so do more accurate
384// assessment.
385//
386 dist = Distance(p).mag();
387// dist = std::sqrt(sqrDist);
388 }
389
390 return dist;
391}
392
393///////////////////////////////////////////////////////////////////////////////
394//
395// Distance (G4ThreeVector, G4double, G4double)
396//
397// Determine the distance to point p. kInfinity is returned if either:
398// (1) outgoing is TRUE and the dot product of the normal vector to the facet
399// and the displacement vector from p to the triangle is negative.
400// (2) outgoing is FALSE and the dot product of the normal vector to the facet
401// and the displacement vector from p to the triangle is positive.
402// If approximate methods show the distance is to be greater than minDist, then
403// forget about further computation and return a very large number.
404//
405// This method has been heavily modified thanks to the valuable comments and
406// corrections of Rickard Holmberg.
407//
408G4double G4TriangularFacet::Distance (const G4ThreeVector &p,
409 const G4double minDist, const G4bool outgoing)
410{
411//
412//
413// Start with quicky test to determine if the surface of the sphere enclosing
414// the triangle is any closer to p than minDist. If not, then don't bother
415// about more accurate test.
416//
417 G4double dist = kInfinity;
418 if ((p-circumcentre).mag()-radius < minDist)
419 {
420//
421//
422// It's possible that the triangle is closer than minDist, so do more accurate
423// assessment.
424//
425 G4ThreeVector v = Distance(p);
426 G4double dist1 = std::sqrt(sqrDist);
427 G4double dir = v.dot(surfaceNormal);
428 G4bool wrongSide = (dir > 0.0 && !outgoing) || (dir < 0.0 && outgoing);
429 if (dist1 <= kCarTolerance*0.5)
430 {
431//
432//
433// Point p is very close to triangle. Check if it's on the wrong side, in
434// which case return distance of 0.0 otherwise .
435//
436 if (wrongSide) dist = 0.0;
437 else dist = dist1;
438 }
439 else if (!wrongSide) dist = dist1;
440 }
441
442 return dist;
443}
444
445///////////////////////////////////////////////////////////////////////////////
446//
447// Extent
448//
449// Calculates the furthest the triangle extends in a particular direction
450// defined by the vector axis.
451//
452G4double G4TriangularFacet::Extent (const G4ThreeVector axis)
453{
454 G4double s = P0.dot(axis);
455 G4double sp = P[0].dot(axis);
456 if (sp > s) s = sp;
457 sp = P[1].dot(axis);
458 if (sp > s) s = sp;
459
460 return s;
461}
462
463///////////////////////////////////////////////////////////////////////////////
464//
465// Intersect
466//
467// Member function to find the next intersection when going from p in the
468// direction of v. If:
469// (1) "outgoing" is TRUE, only consider the face if we are going out through
470// the face.
471// (2) "outgoing" is FALSE, only consider the face if we are going in through
472// the face.
473// Member functions returns TRUE if there is an intersection, FALSE otherwise.
474// Sets the distance (distance along w), distFromSurface (orthogonal distance)
475// and normal.
476//
477// Also considers intersections that happen with negative distance for small
478// distances of distFromSurface = 0.5*kCarTolerance in the wrong direction.
479// This is to detect kSurface without doing a full Inside(p) in
480// G4TessellatedSolid::Distance(p,v) calculation.
481//
482// This member function is thanks the valuable work of Rickard Holmberg. PT.
483// However, "gotos" are the Work of the Devil have been exorcised with
484// extreme prejudice!!
485//
486// IMPORTANT NOTE: These calculations are predicated on v being a unit
487// vector. If G4TessellatedSolid or other classes call this member function
488// with |v| != 1 then there will be errors.
489//
490G4bool G4TriangularFacet::Intersect (const G4ThreeVector &p,
491 const G4ThreeVector &v, G4bool outgoing, G4double &distance,
492 G4double &distFromSurface, G4ThreeVector &normal)
493{
494//
495//
496// Check whether the direction of the facet is consistent with the vector v
497// and the need to be outgoing or ingoing. If inconsistent, disregard and
498// return false.
499//
500 G4double w = v.dot(surfaceNormal);
501 if ((outgoing && (w <-dirTolerance)) || (!outgoing && (w > dirTolerance)))
502 {
503 distance = kInfinity;
504 distFromSurface = kInfinity;
505 normal = G4ThreeVector(0.0,0.0,0.0);
506 return false;
507 }
508//
509//
510// Calculate the orthogonal distance from p to the surface containing the
511// triangle. Then determine if we're on the right or wrong side of the
512// surface (at a distance greater than kCarTolerance) to be consistent with
513// "outgoing".
514//
515 G4ThreeVector D = P0 - p;
516 distFromSurface = D.dot(surfaceNormal);
517 G4bool wrongSide = (outgoing && (distFromSurface < -0.5*kCarTolerance)) ||
518 (!outgoing && (distFromSurface > 0.5*kCarTolerance));
519 if (wrongSide)
520 {
521 distance = kInfinity;
522 distFromSurface = kInfinity;
523 normal = G4ThreeVector(0.0,0.0,0.0);
524 return false;
525 }
526
527 wrongSide = (outgoing && (distFromSurface < 0.0)) ||
528 (!outgoing && (distFromSurface > 0.0));
529 if (wrongSide)
530 {
531//
532//
533// We're slightly on the wrong side of the surface. Check if we're close
534// enough using a precise distance calculation.
535//
536 G4ThreeVector u = Distance(p);
537 if (std::sqrt(sqrDist) <= 0.5*kCarTolerance)
538 {
539//
540//
541// We're very close. Therefore return a small negative number to pretend
542// we intersect.
543//
544 distance = -0.5*kCarTolerance;
545 normal = surfaceNormal;
546 return true;
547 }
548 else
549 {
550//
551//
552// We're close to the surface containing the triangle, but sufficiently
553// far from the triangle, and on the wrong side compared to the directions
554// of the surface normal and v. There is no intersection.
555//
556 distance = kInfinity;
557 distFromSurface = kInfinity;
558 normal = G4ThreeVector(0.0,0.0,0.0);
559 return false;
560 }
561 }
562 if (w < dirTolerance && w > -dirTolerance)
563 {
564//
565//
566// The ray is within the plane of the triangle. Project the problem into 2D
567// in the plane of the triangle. First try to create orthogonal unit vectors
568// mu and nu, where mu is E[0]/|E[0]|. This is kinda like
569// the original algorithm due to Rickard Holmberg, but with better mathematical
570// justification than the original method ... however, beware Rickard's was less
571// time-consuming.
572//
573// Note that vprime is not a unit vector. We need to keep it unnormalised
574// since the values of distance along vprime (s0 and s1) for intersection with
575// the triangle will be used to determine if we cut the plane at the same
576// time.
577//
578 G4ThreeVector mu = E[0].unit();
579 G4ThreeVector nu = surfaceNormal.cross(mu);
580 G4TwoVector pprime(p.dot(mu),p.dot(nu));
581 G4TwoVector vprime(v.dot(mu),v.dot(nu));
582 G4TwoVector P0prime(P0.dot(mu),P0.dot(nu));
583 G4TwoVector E0prime(E[0].mag(),0.0);
584 G4TwoVector E1prime(E[1].dot(mu),E[1].dot(nu));
585
586 G4TwoVector loc[2];
587 if ( tGeomAlg->IntersectLineAndTriangle2D(pprime,vprime,P0prime,
588 E0prime,E1prime,loc) )
589 {
590//
591//
592// There is an intersection between the line and triangle in 2D. Now check
593// which part of the line intersects with the plane containing the triangle
594// in 3D.
595//
596 G4double vprimemag = vprime.mag();
597 G4double s0 = (loc[0] - pprime).mag()/vprimemag;
598 G4double s1 = (loc[1] - pprime).mag()/vprimemag;
599 G4double normDist0 = surfaceNormal.dot(s0*v) - distFromSurface;
600 G4double normDist1 = surfaceNormal.dot(s1*v) - distFromSurface;
601
602 if ((normDist0 < 0.0 && normDist1 < 0.0) ||
603 (normDist0 > 0.0 && normDist1 > 0.0))
604 {
605 distance = kInfinity;
606 distFromSurface = kInfinity;
607 normal = G4ThreeVector(0.0,0.0,0.0);
608 return false;
609 }
610 else
611 {
612 G4double dnormDist = normDist1-normDist0;
613 if (std::abs(dnormDist) < DBL_EPSILON)
614 {
615 distance = s0;
616 normal = surfaceNormal;
617 if (!outgoing) distFromSurface = -distFromSurface;
618 return true;
619 }
620 else
621 {
622 distance = s0 - normDist0*(s1-s0)/dnormDist;
623 normal = surfaceNormal;
624 if (!outgoing) distFromSurface = -distFromSurface;
625 return true;
626 }
627 }
628
629// G4ThreeVector dloc = loc1 - loc0;
630// G4ThreeVector dlocXv = dloc.cross(v);
631// G4double dlocXvmag = dlocXv.mag();
632// if (dloc.mag() <= 0.5*kCarTolerance || dlocXvmag <= DBL_EPSILON)
633// {
634// distance = loc0.mag();
635// normal = surfaceNormal;
636// if (!outgoing) distFromSurface = -distFromSurface;
637// return true;
638// }
639
640// G4ThreeVector loc0Xv = loc0.cross(v);
641// G4ThreeVector loc1Xv = loc1.cross(v);
642// G4double sameDir = -loc0Xv.dot(loc1Xv);
643// if (sameDir < 0.0)
644// {
645// distance = kInfinity;
646// distFromSurface = kInfinity;
647// normal = G4ThreeVector(0.0,0.0,0.0);
648// return false;
649// }
650// else
651// {
652// distance = loc0.mag() + loc0Xv.mag() * dloc.mag()/dlocXvmag;
653// normal = surfaceNormal;
654// if (!outgoing) distFromSurface = -distFromSurface;
655// return true;
656// }
657 }
658 else
659 {
660 distance = kInfinity;
661 distFromSurface = kInfinity;
662 normal = G4ThreeVector(0.0,0.0,0.0);
663 return false;
664 }
665 }
666//
667//
668// Use conventional algorithm to determine the whether there is an
669// intersection. This involves determining the point of intersection of the
670// line with the plane containing the triangle, and then calculating if the
671// point is within the triangle.
672//
673 distance = distFromSurface / w;
674 G4ThreeVector pp = p + v*distance;
675 G4ThreeVector DD = P0 - pp;
676 G4double d = E[0].dot(DD);
677 G4double e = E[1].dot(DD);
678 G4double s = b*e - c*d;
679 G4double t = b*d - a*e;
680
681 if (s < 0.0 || t < 0.0 || s+t > det)
682 {
683//
684//
685// The intersection is outside of the triangle.
686//
687 distance = kInfinity;
688 distFromSurface = kInfinity;
689 normal = G4ThreeVector(0.0,0.0,0.0);
690 return false;
691 }
692 else
693 {
694//
695//
696// There is an intersection. Now we only need to set the surface normal.
697//
698 normal = surfaceNormal;
699 if (!outgoing) distFromSurface = -distFromSurface;
700 return true;
701 }
702}
703
704////////////////////////////////////////////////////////////////////////
705//
706// GetPointOnFace
707//
708// Auxiliary method for get a random point on surface
709
710G4ThreeVector G4TriangularFacet::GetPointOnFace() const
711{
712 G4double alpha = CLHEP::RandFlat::shoot(0.,1.);
713 G4double beta = CLHEP::RandFlat::shoot(0.,1);
714 G4double lambda1=alpha*beta;
715 G4double lambda0=alpha-lambda1;
716
717 return (P0 + lambda0*E[0] + lambda1*E[1]);
718}
719
720////////////////////////////////////////////////////////////////////////
721//
722// GetArea
723//
724// Auxiliary method for returning the surface area
725
726G4double G4TriangularFacet::GetArea()
727{
728 return area;
729}
Note: See TracBrowser for help on using the repository browser.