| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | #include <assert.h>
|
|---|
| 28 |
|
|---|
| 29 | #include "G4GeometryTolerance.hh"
|
|---|
| 30 | #include "G4Paraboloid.hh"
|
|---|
| 31 | #include "G4Polyhedron.hh"
|
|---|
| 32 | #include "Randomize.hh"
|
|---|
| 33 | int main()
|
|---|
| 34 | {
|
|---|
| 35 | G4ThreeVector testPoint;
|
|---|
| 36 |
|
|---|
| 37 | G4Paraboloid paraboloid1("Paraboloid1", 1., 0., 3.);
|
|---|
| 38 | G4Paraboloid paraboloid2("Paraboloid2", .01, 2., 3.);
|
|---|
| 39 |
|
|---|
| 40 | G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
|
|---|
| 41 |
|
|---|
| 42 | // Test Inside function.
|
|---|
| 43 | assert(paraboloid1.Inside(G4ThreeVector(2.598076211, 1.5, 1.)) == kSurface);
|
|---|
| 44 | assert(paraboloid1.Inside(G4ThreeVector((2 * kCarTolerance + 3.) * std::sqrt(3.) / 2., (2. * kCarTolerance + 3.) / 2., 1.)) == kOutside);
|
|---|
| 45 | assert(paraboloid1.Inside(G4ThreeVector((- 2 * kCarTolerance + 3.) * std::sqrt(3.) / 2., (- 2. * kCarTolerance + 3.) / 2., 1.)) == kSurface);
|
|---|
| 46 |
|
|---|
| 47 | assert(paraboloid1.Inside(G4ThreeVector(std::sqrt(4.5) / std::sqrt(2.), std::sqrt(4.5) / std::sqrt(2.), 0.)) == kSurface);
|
|---|
| 48 | assert(paraboloid1.Inside(G4ThreeVector(( 2 * kCarTolerance + std::sqrt(4.5)) / std::sqrt(2.), ( 2. * kCarTolerance + std::sqrt(4.5)) / std::sqrt(2.), 0.)) == kOutside);
|
|---|
| 49 | assert(paraboloid1.Inside(G4ThreeVector((- 2 * kCarTolerance + std::sqrt(4.5)) / std::sqrt(2.), (- 2. * kCarTolerance + std::sqrt(4.5)) / std::sqrt(2.), 0.)) == kInside);
|
|---|
| 50 |
|
|---|
| 51 | assert(paraboloid1.Inside(G4ThreeVector(0., 0., -1.)) == kSurface);
|
|---|
| 52 | assert(paraboloid1.Inside(G4ThreeVector(0., 0., 1.)) == kSurface);
|
|---|
| 53 | assert(paraboloid1.Inside(G4ThreeVector(0., 0., - 1. - 2 * kCarTolerance)) == kOutside);
|
|---|
| 54 | assert(paraboloid1.Inside(G4ThreeVector(0., 0., 1. + 2 * kCarTolerance)) == kOutside);
|
|---|
| 55 | assert(paraboloid1.Inside(G4ThreeVector(0., 0., - 1. + 2 * kCarTolerance)) == kInside);
|
|---|
| 56 | assert(paraboloid1.Inside(G4ThreeVector(0., 0., 1. - 2 * kCarTolerance)) == kInside);
|
|---|
| 57 | assert(paraboloid1.Inside(G4ThreeVector((- 2 * kCarTolerance) / std::sqrt(2.), ( 2. * kCarTolerance ) / std::sqrt(2.), -1.)) == kOutside);
|
|---|
| 58 |
|
|---|
| 59 | assert(paraboloid2.Inside(G4ThreeVector(2.598076211, 1.5, .01)) == kSurface);
|
|---|
| 60 | assert(paraboloid2.Inside(G4ThreeVector((2 * kCarTolerance + 3.) * std::sqrt(3.) / 2., (2. * kCarTolerance + 3.) / 2., .01)) == kOutside);
|
|---|
| 61 | assert(paraboloid2.Inside(G4ThreeVector((- 2 * kCarTolerance + 3.) * std::sqrt(3.) / 2., (- 2. * kCarTolerance + 3.) / 2., .01)) == kSurface);
|
|---|
| 62 |
|
|---|
| 63 | assert(paraboloid2.Inside(G4ThreeVector(std::sqrt(6.5) / std::sqrt(2.), std::sqrt(6.5) / std::sqrt(2.), 0.)) == kSurface);
|
|---|
| 64 | assert(paraboloid2.Inside(G4ThreeVector(( 2. * kCarTolerance + std::sqrt(6.5)) / std::sqrt(2.), ( 2. * kCarTolerance + std::sqrt(6.5)) / std::sqrt(2.), 0.)) == kOutside);
|
|---|
| 65 | assert(paraboloid2.Inside(G4ThreeVector((- 2. * kCarTolerance + std::sqrt(6.5)) / std::sqrt(2.), (- 2. * kCarTolerance + std::sqrt(6.5)) / std::sqrt(2.), 0.)) == kInside);
|
|---|
| 66 |
|
|---|
| 67 | assert(paraboloid2.Inside(G4ThreeVector(0., 0., -.01)) == kSurface);
|
|---|
| 68 | assert(paraboloid2.Inside(G4ThreeVector(0., 0., .01)) == kSurface);
|
|---|
| 69 | assert(paraboloid2.Inside(G4ThreeVector(0., 0., - .01 - 2 * kCarTolerance)) == kOutside);
|
|---|
| 70 | assert(paraboloid2.Inside(G4ThreeVector(0., 0., .01 + 2 * kCarTolerance)) == kOutside);
|
|---|
| 71 | assert(paraboloid2.Inside(G4ThreeVector(0., 0., - .01 + 2 * kCarTolerance)) == kInside);
|
|---|
| 72 | assert(paraboloid2.Inside(G4ThreeVector(0., 0., .01 - 2 * kCarTolerance)) == kInside);
|
|---|
| 73 | assert(paraboloid2.Inside(G4ThreeVector((- 2. - 2 * kCarTolerance) / std::sqrt(2.), (2. + 2. * kCarTolerance ) / std::sqrt(2.), -.01)) == kOutside);
|
|---|
| 74 | assert(paraboloid2.Inside(G4ThreeVector((- 2. + 2 * kCarTolerance) / std::sqrt(2.), (2. - 2. * kCarTolerance ) / std::sqrt(2.), -.01)) == kSurface);
|
|---|
| 75 | assert(paraboloid2.Inside(G4ThreeVector((- 2.) / std::sqrt(2.), (2.) / std::sqrt(2.), -.01)) == kSurface);
|
|---|
| 76 |
|
|---|
| 77 | // Test DistanceToIn(p, v) function.
|
|---|
| 78 | assert(std::fabs(paraboloid1.DistanceToIn( G4ThreeVector(3.,2.,10.),
|
|---|
| 79 | G4ThreeVector(-0.099014754299999993558678568206233, -0.099014754299999993558678568206233, -0.99014754279999994679428709787317))
|
|---|
| 80 | - 9.0895544461477406628091557649896) < kCarTolerance);
|
|---|
| 81 | assert(std::fabs(paraboloid1.DistanceToIn(G4ThreeVector(1., 0., 1.), G4ThreeVector(0., 0., -1.))) < kCarTolerance);
|
|---|
| 82 | assert(std::fabs(paraboloid1.DistanceToIn(G4ThreeVector(0., 0., -2.), G4ThreeVector(0., 0., 1.)) - 1) < kCarTolerance);
|
|---|
| 83 | assert(std::fabs(paraboloid1.DistanceToIn(G4ThreeVector(-2., 0., -1.), G4ThreeVector(1/std::sqrt(2.), 0., 1/std::sqrt(2.))) - 1/ std::sqrt(2.)) < kCarTolerance);
|
|---|
| 84 | assert(std::fabs(paraboloid1.DistanceToIn(G4ThreeVector(1., 0., 1.), G4ThreeVector(1., 0., 0.)) ) >= kInfinity);
|
|---|
| 85 | assert(std::fabs(paraboloid1.DistanceToIn(G4ThreeVector(1., 0., 1.), G4ThreeVector(1., 0., -0.0000001)) ) <= kCarTolerance);
|
|---|
| 86 |
|
|---|
| 87 | assert(std::fabs(paraboloid2.DistanceToIn( G4ThreeVector(3.,2.,10.),
|
|---|
| 88 | G4ThreeVector(-0.099014754299999993558678568206233, -0.099014754299999993558678568206233, -0.99014754279999994679428709787317))
|
|---|
| 89 | - 10.0894054352) < kCarTolerance);
|
|---|
| 90 | assert(std::fabs(paraboloid2.DistanceToIn(G4ThreeVector(1., 0., .01), G4ThreeVector(0., 0., -1.))) < kCarTolerance);
|
|---|
| 91 | assert(std::fabs(paraboloid2.DistanceToIn(G4ThreeVector(0., 0., -1.), G4ThreeVector(0., 0., 1.)) - 0.99) < kCarTolerance);
|
|---|
| 92 | assert(std::fabs(paraboloid2.DistanceToIn(G4ThreeVector(-2.2, 0., -.01), G4ThreeVector(1/std::sqrt(2.), 0., 1/std::sqrt(2.))) - 0.004669633692) < kCarTolerance);
|
|---|
| 93 | assert(std::fabs(paraboloid2.DistanceToIn(G4ThreeVector(1., 0., .01), G4ThreeVector(1., 0., 0.)) ) >= kInfinity);
|
|---|
| 94 | assert(std::fabs(paraboloid2.DistanceToIn(G4ThreeVector(1., 0., .01), G4ThreeVector(1., 0., -0.0000001)) ) <= kCarTolerance);
|
|---|
| 95 |
|
|---|
| 96 | // Test DistanceToOut(p, v, ...) function.
|
|---|
| 97 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(1., 0., 1.), G4ThreeVector(0., 0., -1.), false, NULL, NULL) - 1.7777777777777776) < kCarTolerance);
|
|---|
| 98 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(0., 0., -1.), false, NULL, NULL) - 1) < kCarTolerance);
|
|---|
| 99 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(1. / std::sqrt(2.), 1. / std::sqrt(2.), 0.), false, NULL, NULL) - 2.1213203435) < kCarTolerance);
|
|---|
| 100 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(1. / std::sqrt(2.), 0., 1. / std::sqrt(2.)), false, NULL, NULL) - 1.4142135623) < kCarTolerance);
|
|---|
| 101 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(1. / std::sqrt(2.), 0., -1. / std::sqrt(2.)), false, NULL, NULL) - 1.1912334058) < kCarTolerance);
|
|---|
| 102 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(1., 0., 1.), G4ThreeVector(1., 0., 0.), false, NULL, NULL) - 2.) < kCarTolerance);
|
|---|
| 103 | assert(std::fabs(paraboloid1.DistanceToOut(G4ThreeVector(1., 0., 1.), G4ThreeVector(1., 0., 0.00000001), false, NULL, NULL)) < kCarTolerance);
|
|---|
| 104 |
|
|---|
| 105 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(2.5, 0., .01), G4ThreeVector(0., 0., -1.), false, NULL, NULL) - 0.010999999999999999) < kCarTolerance);
|
|---|
| 106 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(0., 0., -1.), false, NULL, NULL) - 0.01) < kCarTolerance);
|
|---|
| 107 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(1. / std::sqrt(2.), 1. / std::sqrt(2.), 0.), false, NULL, NULL) - 2.5495097567) < kCarTolerance);
|
|---|
| 108 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(1. / std::sqrt(2.), 0., 1. / std::sqrt(2.)), false, NULL, NULL) - 0.01414213562) < kCarTolerance);
|
|---|
| 109 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(0., 0., 0.), G4ThreeVector(1. / std::sqrt(2.), 0., -1. / std::sqrt(2.)), false, NULL, NULL) - 0.01414213562) < kCarTolerance);
|
|---|
| 110 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(1., 0., -.01), G4ThreeVector(1., 0., 0.), false, NULL, NULL) - 1.) < kCarTolerance);
|
|---|
| 111 | assert(std::fabs(paraboloid2.DistanceToOut(G4ThreeVector(1., 0., .01), G4ThreeVector(1., 0., 0.00000001), false, NULL, NULL)) < kCarTolerance);
|
|---|
| 112 |
|
|---|
| 113 | // Test volume function.
|
|---|
| 114 | assert(std::fabs(paraboloid1.GetCubicVolume() - 28.274334) < 1e-6);
|
|---|
| 115 | assert(std::fabs(paraboloid2.GetCubicVolume() - 0.408407) < 1e-6);
|
|---|
| 116 |
|
|---|
| 117 | // Test area function.
|
|---|
| 118 | // G4cout<<paraboloid1.GetPolyhedron()->GetSurfaceArea()<<G4endl;
|
|---|
| 119 | assert(std::fabs(paraboloid1.GetSurfaceArea() - 66.758844) < 1e-6);
|
|---|
| 120 | assert(std::fabs(paraboloid2.GetSurfaceArea() - 56.551935) < 1e-6);
|
|---|
| 121 |
|
|---|
| 122 | // Test SurfaceNormal(p) function.
|
|---|
| 123 | assert((paraboloid1.SurfaceNormal(G4ThreeVector(1., 2., 1.)) - G4ThreeVector(0., 0., 1.)).r() < kCarTolerance);
|
|---|
| 124 | assert((paraboloid1.SurfaceNormal(G4ThreeVector(1.732050808, 2.449489743, 1.)) - G4ThreeVector(0.40824829,0.57735027,0.70710678)).r() < 1e-5);
|
|---|
| 125 | assert((paraboloid1.SurfaceNormal(G4ThreeVector(1.573213272, 1.573213272, 0.1)) - G4ThreeVector(0.49718308,0.49718308,-0.71106819)).r() < 1e-5);
|
|---|
| 126 | assert((paraboloid1.SurfaceNormal(G4ThreeVector(0., 0., -1.)) - G4ThreeVector(0., 0., -1.)).r() < kCarTolerance);
|
|---|
| 127 |
|
|---|
| 128 | assert((paraboloid2.SurfaceNormal(G4ThreeVector(1., 2., 1.)) - G4ThreeVector(0., 0., 1.)).r() < kCarTolerance);
|
|---|
| 129 | assert((paraboloid2.SurfaceNormal(G4ThreeVector(1.732050808, 2.449489743, 0.01)) - G4ThreeVector(0.40824829,0.57735027,0.70710678)).r() < 1e-5);
|
|---|
| 130 | assert((paraboloid2.SurfaceNormal(G4ThreeVector(1.658312395, 2., 0.001)) - G4ThreeVector(0.013263635,0.015996545,-0.99978407)).r() < 1e-5);
|
|---|
| 131 | assert((paraboloid2.SurfaceNormal(G4ThreeVector(0., 0., -.01)) - G4ThreeVector(0., 0., -1.)).r() < kCarTolerance);
|
|---|
| 132 |
|
|---|
| 133 |
|
|---|
| 134 | // Add Test Distance To Out for User Problem with Substraction Of Paraboloid :: Problem Report N1015
|
|---|
| 135 | G4Paraboloid paraboloid3("Paraboloid1", 72., 0., 240.);
|
|---|
| 136 | // G4Paraboloid paraboloid3("Paraboloid1", 72., 210., 240.);//This test is Ok, Intersection with DZ working correctly
|
|---|
| 137 | G4double distOut1;
|
|---|
| 138 | distOut1=paraboloid3.DistanceToOut(G4ThreeVector(200., 0., 72.), G4ThreeVector(0.0,0.,-1.), false, NULL, NULL);
|
|---|
| 139 | assert((distOut1-44.0)<1e-5);
|
|---|
| 140 | //G4cout<<"Test3::distOut="<<distOut1<<G4endl;
|
|---|
| 141 |
|
|---|
| 142 | distOut1=paraboloid3.DistanceToOut(G4ThreeVector(200., 0., 72.), G4ThreeVector(0.000000000001,0.,-1.), false, NULL, NULL);
|
|---|
| 143 | assert((distOut1-44.0)<1e-5);
|
|---|
| 144 | //G4cout<<"Test3::distOut="<<distOut1<<G4endl;
|
|---|
| 145 | // Add Rotation On the Surface around "Problem" Point(200.,0.,72.)
|
|---|
| 146 |
|
|---|
| 147 | G4double tolA=0.25e-7;
|
|---|
| 148 | G4ThreeVector In (200.,0.,72.);
|
|---|
| 149 | EInside in;
|
|---|
| 150 | G4ThreeVector Dir,vDir,pSurf;
|
|---|
| 151 | Dir=G4ThreeVector(10*tolA,0.,-1.);
|
|---|
| 152 | vDir=Dir.unit();
|
|---|
| 153 | in=paraboloid3.Inside(In);
|
|---|
| 154 | if(in!=kSurface)G4cout<<"Problem ::Point p"<<In<<" is NOT On Surface"<<G4endl;
|
|---|
| 155 |
|
|---|
| 156 | for(G4int i=0; i<100; i++){
|
|---|
| 157 |
|
|---|
| 158 | G4double distOut=paraboloid3.DistanceToOut(In,vDir);
|
|---|
| 159 | G4cout.precision(16);
|
|---|
| 160 | pSurf=In+vDir*distOut;
|
|---|
| 161 | in=paraboloid3.Inside(pSurf);
|
|---|
| 162 | if(in!=kSurface) G4cout<<"Problem :: ps is Not on the Surface DistToOut="<<distOut<<" dir="<<vDir<<G4endl;
|
|---|
| 163 | Dir=Dir-G4ThreeVector(tolA,0,0);
|
|---|
| 164 | vDir=Dir.unit();
|
|---|
| 165 |
|
|---|
| 166 | }
|
|---|
| 167 | // Rotation from the Lower DZ plane
|
|---|
| 168 | Dir=G4ThreeVector(10*tolA,0.,1.);
|
|---|
| 169 | vDir=Dir.unit();
|
|---|
| 170 | In= G4ThreeVector (0.,0.,-72.);
|
|---|
| 171 | for(G4int i=0; i<100; i++){
|
|---|
| 172 |
|
|---|
| 173 | G4double distOut=paraboloid3.DistanceToOut(In,vDir);
|
|---|
| 174 | G4cout.precision(16);
|
|---|
| 175 | pSurf=In+vDir*distOut;
|
|---|
| 176 | in=paraboloid3.Inside(pSurf);
|
|---|
| 177 | if(in!=kSurface) G4cout<<"Problem :: ps is Not on the Surface DistToOut="<<distOut<<" dir="<<vDir<<G4endl;
|
|---|
| 178 | Dir=Dir-G4ThreeVector(tolA,0,0);
|
|---|
| 179 | vDir=Dir.unit();
|
|---|
| 180 | }
|
|---|
| 181 | // Paraboloid with R1!=0 and with Point situated On both Surfaces : Z and Parabolic
|
|---|
| 182 | G4Paraboloid paraboloid5("Paraboloid1", 10., 0., 100.);
|
|---|
| 183 | distOut1=paraboloid5.DistanceToOut(G4ThreeVector(100., 0., 10.), G4ThreeVector(0.0,0.,-1.), false, NULL, NULL);
|
|---|
| 184 | assert((distOut1-0.0)<1e-5);
|
|---|
| 185 |
|
|---|
| 186 | Dir=G4ThreeVector(-0.9,0.,-0.1);
|
|---|
| 187 | vDir=Dir.unit();
|
|---|
| 188 | distOut1=paraboloid5.DistanceToOut(G4ThreeVector(100., 0., 10.), vDir, false, NULL, NULL);
|
|---|
| 189 | pSurf=G4ThreeVector(100.0,0.,10.)+vDir*distOut1;
|
|---|
| 190 | in=paraboloid5.Inside(pSurf);
|
|---|
| 191 | if(in!=kSurface)G4cout<<"Problem :: ps is Not on the Surface "<<pSurf<<" vDir="<<vDir<<G4endl;
|
|---|
| 192 |
|
|---|
| 193 | return 0;
|
|---|
| 194 | }
|
|---|