| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: testG4ParameterisedMaterial.cc,v 1.9 2006/06/29 18:58:40 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-ref-00 $
|
|---|
| 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | // Test the Navigation in geometry with parameterised volumes (which
|
|---|
| 32 | // include rotations as well as translations).
|
|---|
| 33 | // Locate & Step within simple boxlike geometry, both
|
|---|
| 34 | // with and without voxels. Parameterised volumes are included.
|
|---|
| 35 | // Started from testG4Parameterised.cc
|
|---|
| 36 |
|
|---|
| 37 | #include <assert.h>
|
|---|
| 38 | #include "G4ios.hh"
|
|---|
| 39 | #include "ApproxEqual.hh"
|
|---|
| 40 |
|
|---|
| 41 | // Global defs
|
|---|
| 42 | #include "globals.hh"
|
|---|
| 43 |
|
|---|
| 44 | #include "G4LogicalVolume.hh"
|
|---|
| 45 | #include "G4VPhysicalVolume.hh"
|
|---|
| 46 | #include "G4PVPlacement.hh"
|
|---|
| 47 | #include "G4PVParameterised.hh"
|
|---|
| 48 | #include "G4VPVParameterisation.hh"
|
|---|
| 49 | #include "G4Box.hh"
|
|---|
| 50 |
|
|---|
| 51 | #include "G4GeometryManager.hh"
|
|---|
| 52 |
|
|---|
| 53 | #include "G4RotationMatrix.hh"
|
|---|
| 54 | #include "G4ThreeVector.hh"
|
|---|
| 55 |
|
|---|
| 56 | #include "G4UnitsTable.hh"
|
|---|
| 57 | #include "G4Element.hh"
|
|---|
| 58 | #include "G4Material.hh"
|
|---|
| 59 |
|
|---|
| 60 | G4Material *Air, *Pb, *Xenon;
|
|---|
| 61 |
|
|---|
| 62 | // Sample Parameterisation with varied materials
|
|---|
| 63 | class MoveRot_andMaterial : public G4VPVParameterisation
|
|---|
| 64 | {
|
|---|
| 65 | public:
|
|---|
| 66 |
|
|---|
| 67 | MoveRot_andMaterial(G4double twistAngle)
|
|---|
| 68 | {
|
|---|
| 69 | fTwistAngle= twistAngle;
|
|---|
| 70 | fRotationVec= new G4RotationMatrix();
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | virtual ~MoveRot_andMaterial()
|
|---|
| 74 | {
|
|---|
| 75 | delete fRotationVec;
|
|---|
| 76 | }
|
|---|
| 77 |
|
|---|
| 78 | G4double GetTwistAngle()
|
|---|
| 79 | {
|
|---|
| 80 | return fTwistAngle;
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 | void SetTwistAngle(G4double newAngle )
|
|---|
| 84 | {
|
|---|
| 85 | fTwistAngle= newAngle;
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | private:
|
|---|
| 89 |
|
|---|
| 90 | virtual void ComputeTransformation(const G4int n, G4VPhysicalVolume* pRep) const
|
|---|
| 91 | {
|
|---|
| 92 | pRep->SetTranslation(G4ThreeVector(0,n*100,0));
|
|---|
| 93 | *fRotationVec = G4RotationMatrix(); // Unit matrix
|
|---|
| 94 | fRotationVec->rotateZ( n * fTwistAngle );
|
|---|
| 95 | pRep->SetRotation( fRotationVec );
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | virtual void ComputeDimensions( G4Box &pBox,
|
|---|
| 99 | const G4int,
|
|---|
| 100 | const G4VPhysicalVolume*) const
|
|---|
| 101 | {
|
|---|
| 102 | pBox.SetXHalfLength(10);
|
|---|
| 103 | pBox.SetYHalfLength(10);
|
|---|
| 104 | pBox.SetZHalfLength(10);
|
|---|
| 105 | }
|
|---|
| 106 |
|
|---|
| 107 | virtual void ComputeDimensions(G4Tubs &,
|
|---|
| 108 | const G4int ,
|
|---|
| 109 | const G4VPhysicalVolume*) const {}
|
|---|
| 110 | virtual void ComputeDimensions(G4Trd &,
|
|---|
| 111 | const G4int,
|
|---|
| 112 | const G4VPhysicalVolume*) const {}
|
|---|
| 113 | virtual void ComputeDimensions(G4Cons &,
|
|---|
| 114 | const G4int ,
|
|---|
| 115 | const G4VPhysicalVolume*) const {}
|
|---|
| 116 | virtual void ComputeDimensions(G4Trap &,
|
|---|
| 117 | const G4int ,
|
|---|
| 118 | const G4VPhysicalVolume*) const {}
|
|---|
| 119 | virtual void ComputeDimensions(G4Hype &,
|
|---|
| 120 | const G4int ,
|
|---|
| 121 | const G4VPhysicalVolume*) const {}
|
|---|
| 122 | virtual void ComputeDimensions(G4Orb &,
|
|---|
| 123 | const G4int ,
|
|---|
| 124 | const G4VPhysicalVolume*) const {}
|
|---|
| 125 | virtual void ComputeDimensions(G4Sphere &,
|
|---|
| 126 | const G4int ,
|
|---|
| 127 | const G4VPhysicalVolume*) const {}
|
|---|
| 128 | virtual void ComputeDimensions(G4Torus &,
|
|---|
| 129 | const G4int ,
|
|---|
| 130 | const G4VPhysicalVolume*) const {}
|
|---|
| 131 | virtual void ComputeDimensions(G4Para &,
|
|---|
| 132 | const G4int ,
|
|---|
| 133 | const G4VPhysicalVolume*) const {}
|
|---|
| 134 | virtual void ComputeDimensions(G4Polycone &,
|
|---|
| 135 | const G4int ,
|
|---|
| 136 | const G4VPhysicalVolume*) const {}
|
|---|
| 137 | virtual void ComputeDimensions(G4Polyhedra &,
|
|---|
| 138 | const G4int ,
|
|---|
| 139 | const G4VPhysicalVolume*) const {}
|
|---|
| 140 | private:
|
|---|
| 141 | G4RotationMatrix *fRotationVec;
|
|---|
| 142 | G4double fTwistAngle;
|
|---|
| 143 | };
|
|---|
| 144 |
|
|---|
| 145 | G4double angle1= 15.0*pi/180.;
|
|---|
| 146 | MoveRot_andMaterial myParam(angle1);
|
|---|
| 147 |
|
|---|
| 148 | // Build simple geometry:
|
|---|
| 149 | // 4 small cubes (G4Boxes) are positioned inside a larger cuboid
|
|---|
| 150 | G4VPhysicalVolume* BuildGeometry()
|
|---|
| 151 | {
|
|---|
| 152 |
|
|---|
| 153 | //--------- Material definition ---------
|
|---|
| 154 |
|
|---|
| 155 | G4double a, iz, z, density;
|
|---|
| 156 | G4String name, symbol;
|
|---|
| 157 | G4double temperature, pressure;
|
|---|
| 158 | G4int nel;
|
|---|
| 159 |
|
|---|
| 160 | //Air
|
|---|
| 161 | a = 14.01*g/mole;
|
|---|
| 162 | G4Element* elN = new G4Element(name="Nitrogen", symbol="N", iz=7., a);
|
|---|
| 163 | a = 16.00*g/mole;
|
|---|
| 164 | G4Element* elO = new G4Element(name="Oxigen", symbol="O", iz=8., a);
|
|---|
| 165 | density = 1.29*mg/cm3;
|
|---|
| 166 | // G4Material*
|
|---|
| 167 | Air = new G4Material(name="Air", density, nel=2);
|
|---|
| 168 | Air->AddElement(elN, .7);
|
|---|
| 169 | Air->AddElement(elO, .3);
|
|---|
| 170 |
|
|---|
| 171 | //Pb
|
|---|
| 172 | a = 207.19*g/mole;
|
|---|
| 173 | density = 11.35*g/cm3;
|
|---|
| 174 | Pb = new G4Material(name="Pb", z=82., a, density);
|
|---|
| 175 |
|
|---|
| 176 | //Xenon gas
|
|---|
| 177 | density = 5.458*mg/cm3;
|
|---|
| 178 | pressure = 1*atmosphere;
|
|---|
| 179 | temperature = 293.15*kelvin;
|
|---|
| 180 | // G4Material*
|
|---|
| 181 | Xenon = new G4Material(name="XenonGas", z=54., a=131.29*g/mole,
|
|---|
| 182 | density, kStateGas,temperature,pressure);
|
|---|
| 183 |
|
|---|
| 184 | // Print all the materials defined.
|
|---|
| 185 | //
|
|---|
| 186 | G4cout << G4endl << "The materials defined are : " << G4endl << G4endl;
|
|---|
| 187 | G4cout << *(G4Material::GetMaterialTable()) << G4endl;
|
|---|
| 188 |
|
|---|
| 189 | // The world volume
|
|---|
| 190 | //
|
|---|
| 191 | G4Box *myBigBox= new G4Box ("Big Cube", 500, 500, 500);
|
|---|
| 192 |
|
|---|
| 193 | G4LogicalVolume *worldLog=new G4LogicalVolume(myBigBox,0,
|
|---|
| 194 | "World",0,0,0);
|
|---|
| 195 | // Logical with no material,field,
|
|---|
| 196 | // sensitive detector or user limits
|
|---|
| 197 |
|
|---|
| 198 | G4PVPlacement *worldPhys=new G4PVPlacement(0,G4ThreeVector(0,0,0),
|
|---|
| 199 | "World",worldLog,
|
|---|
| 200 | 0,false,0);
|
|---|
| 201 | // Note: no mother pointer set
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | // A set of boxes
|
|---|
| 205 | G4Box *myBox=new G4Box("cube",10,10,10);
|
|---|
| 206 | G4LogicalVolume *boxLog=new G4LogicalVolume(myBox,0,
|
|---|
| 207 | "Rotating Box",0,0,0);
|
|---|
| 208 |
|
|---|
| 209 | //G4PVParameterised *paramP=
|
|---|
| 210 | new G4PVParameterised("Rotating Blocks",
|
|---|
| 211 | boxLog,
|
|---|
| 212 | worldPhys, //OR worldLog,
|
|---|
| 213 | kYAxis,
|
|---|
| 214 | 3,
|
|---|
| 215 | &myParam);
|
|---|
| 216 | // Copies 0, 1 & 2 will exist
|
|---|
| 217 |
|
|---|
| 218 | return worldPhys;
|
|---|
| 219 | }
|
|---|
| 220 |
|
|---|
| 221 | //
|
|---|
| 222 | // Test LocateGlobalPointAndSetup
|
|---|
| 223 | //
|
|---|
| 224 | G4bool testG4Navigator1(G4VPhysicalVolume *pTopNode)
|
|---|
| 225 | {
|
|---|
| 226 | MyNavigator myNav;
|
|---|
| 227 | G4VPhysicalVolume *located;
|
|---|
| 228 | myNav.SetWorldVolume(pTopNode);
|
|---|
| 229 |
|
|---|
| 230 | assert(!myNav.LocateGlobalPointAndSetup(G4ThreeVector(kInfinity,0,0),0, false));
|
|---|
| 231 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(100,100,100),0,false);
|
|---|
| 232 | assert(located->GetName()=="World");
|
|---|
| 233 |
|
|---|
| 234 | assert(!myNav.LocateGlobalPointAndSetup(G4ThreeVector(kInfinity,0,0)));
|
|---|
| 235 |
|
|---|
| 236 | //
|
|---|
| 237 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,-5,-5),0,false);
|
|---|
| 238 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 239 | assert(located->GetCopyNo()== 0);
|
|---|
| 240 | assert(ApproxEqual(myNav.CurrentLocalCoordinate(),G4ThreeVector(0,-5,-5)));
|
|---|
| 241 | G4cout << " Local coords = " << myNav.CurrentLocalCoordinate() << G4endl;
|
|---|
| 242 |
|
|---|
| 243 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,100,5));
|
|---|
| 244 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 245 | assert(located->GetCopyNo()== 1);
|
|---|
| 246 | G4cout << " Local coords = " << myNav.CurrentLocalCoordinate() << G4endl;
|
|---|
| 247 | // assert(ApproxEqual(myNav.CurrentLocalCoordinate(),
|
|---|
| 248 | // G4ThreeVector(0,0,10)));
|
|---|
| 249 |
|
|---|
| 250 | // Check that outside point causes stack to unwind
|
|---|
| 251 | assert(!myNav.LocateGlobalPointAndSetup(G4ThreeVector(kInfinity,0,0)));
|
|---|
| 252 |
|
|---|
| 253 | // Check parameterised volumes
|
|---|
| 254 |
|
|---|
| 255 | // Replication 0
|
|---|
| 256 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,5,5));
|
|---|
| 257 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 258 | assert(located->GetCopyNo()== 0);
|
|---|
| 259 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,15,15));
|
|---|
| 260 | assert(located->GetName()=="World");
|
|---|
| 261 |
|
|---|
| 262 | // Replication 1
|
|---|
| 263 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,105,5));
|
|---|
| 264 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 265 | assert(located->GetCopyNo()== 1);
|
|---|
| 266 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,0,-17));
|
|---|
| 267 | assert(located->GetName()=="World");
|
|---|
| 268 |
|
|---|
| 269 | // Replication 2
|
|---|
| 270 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,205,5));
|
|---|
| 271 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 272 | assert(located->GetCopyNo()== 2);
|
|---|
| 273 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(15,15,-18));
|
|---|
| 274 | assert(located->GetName()=="World");
|
|---|
| 275 |
|
|---|
| 276 | return true;
|
|---|
| 277 | }
|
|---|
| 278 |
|
|---|
| 279 |
|
|---|
| 280 | //
|
|---|
| 281 | // Test Stepping
|
|---|
| 282 | //
|
|---|
| 283 | G4bool testG4Navigator2(G4VPhysicalVolume *pTopNode)
|
|---|
| 284 | {
|
|---|
| 285 | MyNavigator myNav;
|
|---|
| 286 | G4VPhysicalVolume *located;
|
|---|
| 287 | G4double Step,physStep,safety;
|
|---|
| 288 | G4ThreeVector xHat(1,0,0),yHat(0,1,0),zHat(0,0,1);
|
|---|
| 289 | G4ThreeVector mxHat(-1,0,0),myHat(0,-1,0),mzHat(0,0,-1);
|
|---|
| 290 |
|
|---|
| 291 | myNav.SetWorldVolume(pTopNode);
|
|---|
| 292 |
|
|---|
| 293 | //
|
|---|
| 294 | // Test location & Step computation
|
|---|
| 295 | //
|
|---|
| 296 | G4ThreeVector StartPoint(-50,0,-5);
|
|---|
| 297 | located=myNav.LocateGlobalPointAndSetup( StartPoint );
|
|---|
| 298 | assert(located->GetName()=="World");
|
|---|
| 299 | physStep=kInfinity;
|
|---|
| 300 | Step=myNav.ComputeStep( StartPoint, mxHat,physStep,safety); // -x dir
|
|---|
| 301 | assert(ApproxEqual(Step,450));
|
|---|
| 302 | // assert(ApproxEqual(safety,40));
|
|---|
| 303 | // assert(safety>=0);
|
|---|
| 304 |
|
|---|
| 305 | StartPoint= G4ThreeVector(-15,0,-5);
|
|---|
| 306 | located=myNav.LocateGlobalPointAndSetup( StartPoint );
|
|---|
| 307 | assert(located->GetName()=="World");
|
|---|
| 308 | physStep=kInfinity;
|
|---|
| 309 | Step=myNav.ComputeStep( StartPoint,xHat,physStep,safety); // +x dir
|
|---|
| 310 | assert(ApproxEqual(Step,5));
|
|---|
| 311 | // assert(ApproxEqual(safety,5));
|
|---|
| 312 | assert(safety>=0);
|
|---|
| 313 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 314 | G4ThreeVector EndPoint = StartPoint + Step * xHat;
|
|---|
| 315 | located=myNav.LocateGlobalPointAndSetup(EndPoint,0,true);
|
|---|
| 316 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 317 |
|
|---|
| 318 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,0,-40));
|
|---|
| 319 | assert(located->GetName()=="World");
|
|---|
| 320 | physStep=kInfinity;
|
|---|
| 321 | Step=myNav.ComputeStep(G4ThreeVector(0,0,-40),zHat,physStep,safety);
|
|---|
| 322 | assert(ApproxEqual(Step,30));
|
|---|
| 323 | // assert(ApproxEqual(safety,5));
|
|---|
| 324 | assert(safety>=0);
|
|---|
| 325 |
|
|---|
| 326 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,0, 40));
|
|---|
| 327 | assert(located->GetName()=="World");
|
|---|
| 328 | physStep=kInfinity;
|
|---|
| 329 | Step=myNav.ComputeStep(G4ThreeVector(0,0,40),mzHat,physStep,safety);
|
|---|
| 330 | assert(ApproxEqual(Step,30));
|
|---|
| 331 | // assert(ApproxEqual(safety,5));
|
|---|
| 332 | assert(safety>=0);
|
|---|
| 333 |
|
|---|
| 334 |
|
|---|
| 335 | //
|
|---|
| 336 | // Test moving through series of volumes
|
|---|
| 337 | //
|
|---|
| 338 | StartPoint= G4ThreeVector(0,-20,0);
|
|---|
| 339 | located=myNav.LocateGlobalPointAndSetup(G4ThreeVector(0,-20,0));
|
|---|
| 340 | assert(located->GetName()=="World");
|
|---|
| 341 |
|
|---|
| 342 | // Replication 0 block
|
|---|
| 343 | //
|
|---|
| 344 | physStep=kInfinity;
|
|---|
| 345 | Step=myNav.ComputeStep(G4ThreeVector(0,-20,0),yHat,physStep,safety);
|
|---|
| 346 | assert(ApproxEqual(Step,10));
|
|---|
| 347 | EndPoint= StartPoint + Step * yHat; // Should be 0, -10, 0
|
|---|
| 348 | assert(ApproxEqual( 0, (EndPoint-G4ThreeVector(0,-10,0)).mag()) );
|
|---|
| 349 | // assert(ApproxEqual(safety,0));
|
|---|
| 350 |
|
|---|
| 351 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 352 | located=myNav.LocateGlobalPointAndSetup(EndPoint) ;
|
|---|
| 353 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 354 | Step=myNav.ComputeStep(EndPoint,yHat,physStep,safety);
|
|---|
| 355 | assert(ApproxEqual(Step,20));
|
|---|
| 356 | assert(ApproxEqual(safety,0));
|
|---|
| 357 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 358 | EndPoint += Step * yHat; // Should be 0, +10, 0
|
|---|
| 359 | located=myNav.LocateGlobalPointAndSetup( EndPoint );
|
|---|
| 360 | assert(located->GetName()=="World");
|
|---|
| 361 |
|
|---|
| 362 | // Replication 1 block
|
|---|
| 363 | //
|
|---|
| 364 | StartPoint= EndPoint;
|
|---|
| 365 | physStep=kInfinity;
|
|---|
| 366 | Step=myNav.ComputeStep(StartPoint,yHat,physStep,safety);
|
|---|
| 367 | assert(ApproxEqual(Step,90.-10./std::cos(angle1)));
|
|---|
| 368 | EndPoint= StartPoint + Step * yHat; // Should near 0, 90, 0
|
|---|
| 369 | assert(safety<=Step);
|
|---|
| 370 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 371 | located=myNav.LocateGlobalPointAndSetup(EndPoint) ;
|
|---|
| 372 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 373 |
|
|---|
| 374 | StartPoint= EndPoint;
|
|---|
| 375 | physStep=kInfinity;
|
|---|
| 376 | Step=myNav.ComputeStep(StartPoint,yHat,physStep,safety);
|
|---|
| 377 | assert(ApproxEqual(Step,20./std::cos(angle1)));
|
|---|
| 378 | assert(ApproxEqual(safety,0));
|
|---|
| 379 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 380 | EndPoint += Step * yHat; // Should be near 0, 110, 0
|
|---|
| 381 | located=myNav.LocateGlobalPointAndSetup( EndPoint );
|
|---|
| 382 | assert(located->GetName()=="World");
|
|---|
| 383 |
|
|---|
| 384 | // Replication 2 block
|
|---|
| 385 | //
|
|---|
| 386 | StartPoint= EndPoint;
|
|---|
| 387 | physStep=kInfinity;
|
|---|
| 388 | Step=myNav.ComputeStep(StartPoint,yHat,physStep,safety);
|
|---|
| 389 | assert(ApproxEqual(Step,100.-10.*(1./std::cos(angle1)+1./std::cos(2.*angle1))));
|
|---|
| 390 | EndPoint= StartPoint + Step * yHat; // Should near 0, 190, 0
|
|---|
| 391 | assert(safety<=Step);
|
|---|
| 392 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 393 | located=myNav.LocateGlobalPointAndSetup(EndPoint);
|
|---|
| 394 | assert(located->GetName()=="Rotating Blocks");
|
|---|
| 395 |
|
|---|
| 396 | StartPoint= EndPoint;
|
|---|
| 397 | physStep=kInfinity;
|
|---|
| 398 | Step=myNav.ComputeStep(StartPoint,yHat,physStep,safety);
|
|---|
| 399 | assert(ApproxEqual(Step,20./std::cos(2.*angle1)));
|
|---|
| 400 | assert(ApproxEqual(safety,0));
|
|---|
| 401 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 402 | EndPoint += Step * yHat; // Should be near 0, 110, 0
|
|---|
| 403 | located=myNav.LocateGlobalPointAndSetup( EndPoint );
|
|---|
| 404 | assert(located->GetName()=="World");
|
|---|
| 405 |
|
|---|
| 406 | // Edge of the world
|
|---|
| 407 | //
|
|---|
| 408 | StartPoint= EndPoint;
|
|---|
| 409 | physStep=kInfinity;
|
|---|
| 410 | Step=myNav.ComputeStep(StartPoint,yHat,physStep,safety);
|
|---|
| 411 | assert(ApproxEqual(Step, 300. - 10./std::cos(2.*angle1) ));
|
|---|
| 412 | assert(ApproxEqual(safety,0));
|
|---|
| 413 | myNav.SetGeometricallyLimitedStep();
|
|---|
| 414 | EndPoint += Step * yHat; // Should be near 0, 110, 0
|
|---|
| 415 | located=myNav.LocateGlobalPointAndSetup( EndPoint );
|
|---|
| 416 | assert(!located);
|
|---|
| 417 |
|
|---|
| 418 |
|
|---|
| 419 | return true;
|
|---|
| 420 | }
|
|---|
| 421 |
|
|---|
| 422 | int main()
|
|---|
| 423 | {
|
|---|
| 424 | //Units table
|
|---|
| 425 | G4UnitDefinition::BuildUnitsTable();
|
|---|
| 426 |
|
|---|
| 427 | G4VPhysicalVolume *myTopNode;
|
|---|
| 428 | myTopNode=BuildGeometry(); // Build the geometry
|
|---|
| 429 | G4GeometryManager::GetInstance()->CloseGeometry(false);
|
|---|
| 430 | testG4Navigator1(myTopNode);
|
|---|
| 431 | testG4Navigator2(myTopNode);
|
|---|
| 432 | // Repeat tests but with full voxels
|
|---|
| 433 | G4GeometryManager::GetInstance()->OpenGeometry();
|
|---|
| 434 | G4GeometryManager::GetInstance()->CloseGeometry(true);
|
|---|
| 435 | testG4Navigator1(myTopNode);
|
|---|
| 436 | testG4Navigator2(myTopNode);
|
|---|
| 437 |
|
|---|
| 438 | G4GeometryManager::GetInstance()->OpenGeometry();
|
|---|
| 439 | return 0;
|
|---|
| 440 | }
|
|---|
| 441 |
|
|---|
| 442 |
|
|---|
| 443 |
|
|---|
| 444 |
|
|---|