| [833] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4ChebyshevApproximation.hh,v 1.6 2006/06/29 18:59:26 gunter Exp $
|
|---|
| [1228] | 28 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| [833] | 29 | //
|
|---|
| 30 | // Class description:
|
|---|
| 31 | //
|
|---|
| 32 | // Class creating the Chebyshev approximation for a function pointed by fFunction
|
|---|
| 33 | // data member. The Chebyshev polinom approximation provides an efficient evaluation
|
|---|
| 34 | // of minimax polynomial, which (among all polynomials of the same degree) has the
|
|---|
| 35 | // smallest maximum deviation from the true function.
|
|---|
| 36 | // The methods based mainly on recommendations given in the book : An introduction to
|
|---|
| 37 | // NUMERICAL METHODS IN C++, B.H. Flowers, Claredon Press, Oxford, 1995
|
|---|
| 38 | //
|
|---|
| 39 | // ------------------------- MEMBER DATA ------------------------------------
|
|---|
| 40 | //
|
|---|
| 41 | // function fFunction - pointer to a function considered
|
|---|
| 42 | // G4int fNumber - number of Chebyshev coefficients
|
|---|
| 43 | // G4double* fChebyshevCof - array of Chebyshev coefficients
|
|---|
| 44 | // G4double fMean = (a+b)/2 - mean point of interval
|
|---|
| 45 | // G4double fDiff = (b-a)/2 - half of the interval value
|
|---|
| 46 | //
|
|---|
| 47 | // ------------------------ CONSTRUCTORS ----------------------------------
|
|---|
| 48 | //
|
|---|
| 49 | // Constructor for initialisation of the class data members. It creates the array
|
|---|
| 50 | // fChebyshevCof[0,...,fNumber-1], fNumber = n ; which consists of Chebyshev
|
|---|
| 51 | // coefficients describing the function pointed by pFunction. The values a and b
|
|---|
| 52 | // fixe the interval of validity of Chebyshev approximation.
|
|---|
| 53 | //
|
|---|
| 54 | // G4ChebyshevApproximation( function pFunction,
|
|---|
| 55 | // G4int n,
|
|---|
| 56 | // G4double a,
|
|---|
| 57 | // G4double b )
|
|---|
| 58 | //
|
|---|
| 59 | // --------------------------------------------------------------------
|
|---|
| 60 | //
|
|---|
| 61 | // Constructor for creation of Chebyshev coefficients for m-derivative
|
|---|
| 62 | // from pFunction. The value of m ! MUST BE ! < n , because the result
|
|---|
| 63 | // array of fChebyshevCof will be of (n-m) size. There is a definite dependence
|
|---|
| 64 | // between the proper selection of n, m, a and b values to get better accuracy
|
|---|
| 65 | // of the derivative value.
|
|---|
| 66 | //
|
|---|
| 67 | // G4ChebyshevApproximation( function pFunction,
|
|---|
| 68 | // G4int n,
|
|---|
| 69 | // G4int m,
|
|---|
| 70 | // G4double a,
|
|---|
| 71 | // G4double b )
|
|---|
| 72 | //
|
|---|
| 73 | // ------------------------------------------------------
|
|---|
| 74 | //
|
|---|
| 75 | // Constructor for creation of Chebyshev coefficients for integral
|
|---|
| 76 | // from pFunction.
|
|---|
| 77 | //
|
|---|
| 78 | // G4ChebyshevApproximation( function pFunction,
|
|---|
| 79 | // G4double a,
|
|---|
| 80 | // G4double b,
|
|---|
| 81 | // G4int n )
|
|---|
| 82 | //
|
|---|
| 83 | // ---------------------------------------------------------------
|
|---|
| 84 | //
|
|---|
| 85 | // Destructor deletes the array of Chebyshev coefficients
|
|---|
| 86 | //
|
|---|
| 87 | // ~G4ChebyshevApproximation()
|
|---|
| 88 | //
|
|---|
| 89 | // ----------------------------- METHODS ----------------------------------
|
|---|
| 90 | //
|
|---|
| 91 | // Access function for Chebyshev coefficients
|
|---|
| 92 | //
|
|---|
| 93 | // G4double GetChebyshevCof(G4int number) const
|
|---|
| 94 | //
|
|---|
| 95 | // --------------------------------------------------------------
|
|---|
| 96 | //
|
|---|
| 97 | // Evaluate the value of fFunction at the point x via the Chebyshev coefficients
|
|---|
| 98 | // fChebyshevCof[0,...,fNumber-1]
|
|---|
| 99 | //
|
|---|
| 100 | // G4double ChebyshevEvaluation(G4double x) const
|
|---|
| 101 | //
|
|---|
| 102 | // ------------------------------------------------------------------
|
|---|
| 103 | //
|
|---|
| 104 | // Returns the array derCof[0,...,fNumber-2], the Chebyshev coefficients of the
|
|---|
| 105 | // derivative of the function whose coefficients are fChebyshevCof
|
|---|
| 106 | //
|
|---|
| 107 | // void DerivativeChebyshevCof(G4double derCof[]) const
|
|---|
| 108 | //
|
|---|
| 109 | // ------------------------------------------------------------------------
|
|---|
| 110 | //
|
|---|
| 111 | // This function produces the array integralCof[0,...,fNumber-1] , the Chebyshev
|
|---|
| 112 | // coefficients of the integral of the function whose coefficients are
|
|---|
| 113 | // fChebyshevCof. The constant of integration is set so that the integral vanishes
|
|---|
| 114 | // at the point (fMean - fDiff)
|
|---|
| 115 | //
|
|---|
| 116 | // void IntegralChebyshevCof(G4double integralCof[]) const
|
|---|
| 117 |
|
|---|
| 118 | // --------------------------- HISTORY --------------------------------------
|
|---|
| 119 | //
|
|---|
| 120 | // 24.04.97 V.Grichine ( Vladimir.Grichine@cern.ch )
|
|---|
| 121 |
|
|---|
| 122 | #ifndef G4CHEBYSHEVAPPROXIMATION_HH
|
|---|
| 123 | #define G4CHEBYSHEVAPPROXIMATION_HH
|
|---|
| 124 |
|
|---|
| 125 | #include "globals.hh"
|
|---|
| 126 |
|
|---|
| 127 | typedef G4double (*function)(G4double) ;
|
|---|
| 128 |
|
|---|
| 129 | class G4ChebyshevApproximation
|
|---|
| 130 | {
|
|---|
| 131 | public: // with description
|
|---|
| 132 |
|
|---|
| 133 | G4ChebyshevApproximation( function pFunction,
|
|---|
| 134 | G4int n,
|
|---|
| 135 | G4double a,
|
|---|
| 136 | G4double b ) ;
|
|---|
| 137 | //
|
|---|
| 138 | // Constructor for creation of Chebyshev coefficients for m-derivative
|
|---|
| 139 | // from pFunction. The value of m ! MUST BE ! < n , because the result
|
|---|
| 140 | // array of fChebyshevCof will be of (n-m) size.
|
|---|
| 141 |
|
|---|
| 142 | G4ChebyshevApproximation( function pFunction,
|
|---|
| 143 | G4int n,
|
|---|
| 144 | G4int m,
|
|---|
| 145 | G4double a,
|
|---|
| 146 | G4double b ) ;
|
|---|
| 147 | //
|
|---|
| 148 | // Constructor for creation of Chebyshev coefficients for integral
|
|---|
| 149 | // from pFunction.
|
|---|
| 150 |
|
|---|
| 151 | G4ChebyshevApproximation( function pFunction,
|
|---|
| 152 | G4double a,
|
|---|
| 153 | G4double b,
|
|---|
| 154 | G4int n ) ;
|
|---|
| 155 |
|
|---|
| 156 | ~G4ChebyshevApproximation() ;
|
|---|
| 157 |
|
|---|
| 158 | // Access functions
|
|---|
| 159 |
|
|---|
| 160 | G4double GetChebyshevCof(G4int number) const ;
|
|---|
| 161 |
|
|---|
| 162 | // Methods
|
|---|
| 163 |
|
|---|
| 164 | G4double ChebyshevEvaluation(G4double x) const ;
|
|---|
| 165 | void DerivativeChebyshevCof(G4double derCof[]) const ;
|
|---|
| 166 | void IntegralChebyshevCof(G4double integralCof[]) const ;
|
|---|
| 167 |
|
|---|
| 168 | private:
|
|---|
| 169 |
|
|---|
| 170 | G4ChebyshevApproximation(const G4ChebyshevApproximation&);
|
|---|
| 171 | G4ChebyshevApproximation& operator=(const G4ChebyshevApproximation&);
|
|---|
| 172 |
|
|---|
| 173 | private:
|
|---|
| 174 |
|
|---|
| 175 | function fFunction ;
|
|---|
| 176 | G4int fNumber ;
|
|---|
| 177 | G4double* fChebyshevCof ;
|
|---|
| 178 | G4double fMean ;
|
|---|
| 179 | G4double fDiff ;
|
|---|
| 180 | };
|
|---|
| 181 |
|
|---|
| 182 | #endif
|
|---|