| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4GaussLaguerreQ.hh,v 1.6 2006/06/29 18:59:40 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // Class description:
|
|---|
| 31 | //
|
|---|
| 32 | // Class for realization of Gauss-Laguerre quadrature method
|
|---|
| 33 | // Roots of ortogonal polynoms and corresponding weights are calculated based on
|
|---|
| 34 | // iteration method (by bisection Newton algorithm). Constant values for initial
|
|---|
| 35 | // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
|
|---|
| 36 | // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
|
|---|
| 37 | // 10, and 22 .
|
|---|
| 38 | //
|
|---|
| 39 | // ---------------------------------------------------------------------------
|
|---|
| 40 | //
|
|---|
| 41 | // Constructor for Gauss-Laguerre quadrature method: integral from zero to
|
|---|
| 42 | // infinity of std::pow(x,alpha)*std::exp(-x)*f(x). The value of nLaguerre sets the accuracy.
|
|---|
| 43 | // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and
|
|---|
| 44 | // fWeight[0,..,nLaguerre-1] . The function GaussLaguerre(f) should be called
|
|---|
| 45 | // then with any f .
|
|---|
| 46 | //
|
|---|
| 47 | // G4GaussLaguerreQ( function pFunction,
|
|---|
| 48 | // G4double alpha,
|
|---|
| 49 | // G4int nLaguerre )
|
|---|
| 50 | //
|
|---|
| 51 | //
|
|---|
| 52 | // -------------------------------------------------------------------------
|
|---|
| 53 | //
|
|---|
| 54 | // Gauss-Laguerre method for integration of std::pow(x,alpha)*std::exp(-x)*pFunction(x)
|
|---|
| 55 | // from zero up to infinity. pFunction is evaluated in fNumber points for which
|
|---|
| 56 | // fAbscissa[i] and fWeight[i] arrays were created in constructor
|
|---|
| 57 | //
|
|---|
| 58 | // G4double Integral() const
|
|---|
| 59 |
|
|---|
| 60 | // ------------------------------- HISTORY --------------------------------
|
|---|
| 61 | //
|
|---|
| 62 | // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
|
|---|
| 63 |
|
|---|
| 64 | #ifndef G4GAUSSLAGUERREQ_HH
|
|---|
| 65 | #define G4GAUSSLAGUERREQ_HH
|
|---|
| 66 |
|
|---|
| 67 | #include "G4VGaussianQuadrature.hh"
|
|---|
| 68 |
|
|---|
| 69 | class G4GaussLaguerreQ : public G4VGaussianQuadrature
|
|---|
| 70 | {
|
|---|
| 71 | public:
|
|---|
| 72 | G4GaussLaguerreQ( function pFunction,
|
|---|
| 73 | G4double alpha,
|
|---|
| 74 | G4int nLaguerre ) ;
|
|---|
| 75 |
|
|---|
| 76 | // Methods
|
|---|
| 77 |
|
|---|
| 78 | G4double Integral() const ;
|
|---|
| 79 |
|
|---|
| 80 | private:
|
|---|
| 81 |
|
|---|
| 82 | G4GaussLaguerreQ(const G4GaussLaguerreQ&);
|
|---|
| 83 | G4GaussLaguerreQ& operator=(const G4GaussLaguerreQ&);
|
|---|
| 84 | };
|
|---|
| 85 |
|
|---|
| 86 | #endif
|
|---|