source: trunk/source/global/HEPNumerics/include/G4GaussLegendreQ.hh@ 1340

Last change on this file since 1340 was 1337, checked in by garnier, 15 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 5.1 KB
RevLine 
[833]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4GaussLegendreQ.hh,v 1.6 2006/06/29 18:59:42 gunter Exp $
[1337]28// GEANT4 tag $Name: geant4-09-04-beta-01 $
[833]29//
30// Class description:
31//
32// Class for Gauss-Legendre integration method
33// Roots of ortogonal polynoms and corresponding weights are calculated based on
34// iteration method (by bisection Newton algorithm). Constant values for initial
35// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
36// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
37// 10, and 22 .
38//
39// ------------------------- CONSTRUCTORS: -------------------------------
40//
41// Constructor for GaussLegendre quadrature method. The value nLegendre set the
42// accuracy required, i.e the number of points where the function pFunction will
43// be evaluated during integration. The constructor creates the arrays for
44// abscissas and weights that used in Gauss-Legendre quadrature method.
45// The values a and b are the limits of integration of the pFunction.
46//
47// G4GaussLegendreQ( function pFunction,
48// G4int nLegendre )
49//
50// -------------------------- METHODS: ---------------------------------------
51//
52// Returns the integral of the function to be pointed by fFunction between a and b,
53// by 2*fNumber point Gauss-Legendre integration: the function is evaluated exactly
54// 2*fNumber Times at interior points in the range of integration. Since the weights
55// and abscissas are, in this case, symmetric around the midpoint of the range of
56// integration, there are actually only fNumber distinct values of each.
57//
58// G4double Integral(G4double a, G4double b) const
59//
60// -----------------------------------------------------------------------
61//
62// Returns the integral of the function to be pointed by fFunction between a and b,
63// by ten point Gauss-Legendre integration: the function is evaluated exactly
64// ten Times at interior points in the range of integration. Since the weights
65// and abscissas are, in this case, symmetric around the midpoint of the range of
66// integration, there are actually only five distinct values of each
67//
68// G4double
69// QuickIntegral(G4double a, G4double b) const
70//
71// ---------------------------------------------------------------------
72//
73// Returns the integral of the function to be pointed by fFunction between a and b,
74// by 96 point Gauss-Legendre integration: the function is evaluated exactly
75// ten Times at interior points in the range of integration. Since the weights
76// and abscissas are, in this case, symmetric around the midpoint of the range of
77// integration, there are actually only five distinct values of each
78//
79// G4double
80// AccurateIntegral(G4double a, G4double b) const
81
82// ------------------------------- HISTORY --------------------------------
83//
84// 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
85
86#ifndef G4GAUSSLEGENDREQ_HH
87#define G4GAUSSLEGENDREQ_HH
88
89#include "G4VGaussianQuadrature.hh"
90
91class G4GaussLegendreQ : public G4VGaussianQuadrature
92{
93public:
94 explicit G4GaussLegendreQ( function pFunction ) ;
95
96
97 G4GaussLegendreQ( function pFunction,
98 G4int nLegendre ) ;
99
100 // Methods
101
102 G4double Integral(G4double a, G4double b) const ;
103
104 G4double QuickIntegral(G4double a, G4double b) const ;
105
106 G4double AccurateIntegral(G4double a, G4double b) const ;
107
108private:
109
110 G4GaussLegendreQ(const G4GaussLegendreQ&);
111 G4GaussLegendreQ& operator=(const G4GaussLegendreQ&);
112};
113
114#endif
Note: See TracBrowser for help on using the repository browser.