| [833] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Integrator.hh,v 1.7 2006/06/29 18:59:45 gunter Exp $
|
|---|
| [1228] | 28 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| [833] | 29 | //
|
|---|
| 30 | // Class description:
|
|---|
| 31 | //
|
|---|
| 32 | // Template class collecting integrator methods for generic funtions.
|
|---|
| 33 |
|
|---|
| 34 | // History:
|
|---|
| 35 | //
|
|---|
| 36 | // 04.09.99 V.Grichine, first implementation based on G4SimpleIntegration class
|
|---|
| 37 | // H.P.Wellisch, G.Cosmo, and E.Cherniaev advises
|
|---|
| 38 | // 08.09.99 V.Grichine, methods involving orthogonal polynomials
|
|---|
| 39 | //
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | #ifndef G4INTEGRATOR_HH
|
|---|
| 43 | #define G4INTEGRATOR_HH 1
|
|---|
| 44 |
|
|---|
| 45 | #include "G4Types.hh"
|
|---|
| 46 | #include <cmath>
|
|---|
| 47 |
|
|---|
| 48 | template <class T, class F>
|
|---|
| 49 | class G4Integrator
|
|---|
| 50 | {
|
|---|
| 51 | public: // with description
|
|---|
| 52 |
|
|---|
| 53 | G4Integrator(){;}
|
|---|
| 54 | ~G4Integrator(){;}
|
|---|
| 55 |
|
|---|
| 56 | G4double Simpson( T& typeT, F f, G4double a, G4double b, G4int n ) ;
|
|---|
| 57 | G4double Simpson( T* ptrT, F f, G4double a, G4double b, G4int n ) ;
|
|---|
| 58 | G4double Simpson( G4double (*f)(G4double),
|
|---|
| 59 | G4double a, G4double b, G4int n ) ;
|
|---|
| 60 | // Simpson integration method
|
|---|
| 61 |
|
|---|
| 62 | G4double AdaptiveGauss( T& typeT, F f, G4double a, G4double b, G4double e ) ;
|
|---|
| 63 | G4double AdaptiveGauss( T* ptrT, F f, G4double a, G4double b, G4double e ) ;
|
|---|
| 64 | G4double AdaptiveGauss( G4double (*f)(G4double),
|
|---|
| 65 | G4double a, G4double b, G4double e ) ;
|
|---|
| 66 | // Adaptive Gauss method
|
|---|
| 67 |
|
|---|
| 68 |
|
|---|
| 69 | // Integration methods involving orthogohol polynomials
|
|---|
| 70 |
|
|---|
| 71 | G4double Legendre( T& typeT, F f, G4double a, G4double b, G4int n) ;
|
|---|
| 72 | G4double Legendre( T* ptrT, F f, G4double a, G4double b, G4int n) ;
|
|---|
| 73 | G4double Legendre( G4double (*f)(G4double), G4double a, G4double b, G4int n) ;
|
|---|
| 74 | //
|
|---|
| 75 | // Methods involving Legendre polynomials
|
|---|
| 76 |
|
|---|
| 77 | G4double Legendre10( T& typeT, F f,G4double a, G4double b) ;
|
|---|
| 78 | G4double Legendre10( T* ptrT, F f,G4double a, G4double b) ;
|
|---|
| 79 | G4double Legendre10( G4double (*f)(G4double), G4double a, G4double b) ;
|
|---|
| 80 | //
|
|---|
| 81 | // Legendre10 is very fast and accurate enough
|
|---|
| 82 |
|
|---|
| 83 | G4double Legendre96( T& typeT, F f,G4double a, G4double b) ;
|
|---|
| 84 | G4double Legendre96( T* ptrT, F f,G4double a, G4double b) ;
|
|---|
| 85 | G4double Legendre96( G4double (*f)(G4double), G4double a, G4double b) ;
|
|---|
| 86 | //
|
|---|
| 87 | // Legendre96 is very accurate and fast enough
|
|---|
| 88 |
|
|---|
| 89 | G4double Chebyshev( T& typeT, F f, G4double a, G4double b, G4int n) ;
|
|---|
| 90 | G4double Chebyshev( T* ptrT, F f, G4double a, G4double b, G4int n) ;
|
|---|
| 91 | G4double Chebyshev( G4double (*f)(G4double), G4double a, G4double b, G4int n) ;
|
|---|
| 92 | //
|
|---|
| 93 | // Methods involving Chebyshev polynomials
|
|---|
| 94 |
|
|---|
| 95 | G4double Laguerre( T& typeT, F f, G4double alpha, G4int n) ;
|
|---|
| 96 | G4double Laguerre( T* ptrT, F f, G4double alpha, G4int n) ;
|
|---|
| 97 | G4double Laguerre( G4double (*f)(G4double), G4double alpha, G4int n) ;
|
|---|
| 98 | //
|
|---|
| 99 | // Method involving Laguerre polynomials
|
|---|
| 100 |
|
|---|
| 101 | G4double Hermite( T& typeT, F f, G4int n) ;
|
|---|
| 102 | G4double Hermite( T* ptrT, F f, G4int n) ;
|
|---|
| 103 | G4double Hermite( G4double (*f)(G4double), G4int n) ;
|
|---|
| 104 | //
|
|---|
| 105 | // Method involving Hermite polynomials
|
|---|
| 106 |
|
|---|
| 107 | G4double Jacobi( T& typeT, F f, G4double alpha, G4double beta, G4int n) ;
|
|---|
| 108 | G4double Jacobi( T* ptrT, F f, G4double alpha, G4double beta, G4int n) ;
|
|---|
| 109 | G4double Jacobi( G4double (*f)(G4double), G4double alpha,
|
|---|
| 110 | G4double beta, G4int n) ;
|
|---|
| 111 | // Method involving Jacobi polynomials
|
|---|
| 112 |
|
|---|
| 113 |
|
|---|
| 114 | protected:
|
|---|
| 115 |
|
|---|
| 116 | // Auxiliary function for adaptive Gauss method
|
|---|
| 117 |
|
|---|
| 118 | G4double Gauss( T& typeT, F f, G4double a, G4double b ) ;
|
|---|
| 119 | G4double Gauss( T* ptrT, F f, G4double a, G4double b ) ;
|
|---|
| 120 | G4double Gauss( G4double (*f)(G4double), G4double a, G4double b) ;
|
|---|
| 121 |
|
|---|
| 122 | void AdaptGauss( T& typeT, F f, G4double a, G4double b,
|
|---|
| 123 | G4double e, G4double& sum, G4int& n) ;
|
|---|
| 124 | void AdaptGauss( T* typeT, F f, G4double a, G4double b,
|
|---|
| 125 | G4double e, G4double& sum, G4int& n ) ;
|
|---|
| 126 | void AdaptGauss( G4double (*f)(G4double), G4double a, G4double b,
|
|---|
| 127 | G4double e, G4double& sum, G4int& n ) ;
|
|---|
| 128 |
|
|---|
| 129 | G4double GammaLogarithm(G4double xx) ;
|
|---|
| 130 |
|
|---|
| 131 |
|
|---|
| 132 | } ;
|
|---|
| 133 |
|
|---|
| 134 | #include "G4Integrator.icc"
|
|---|
| 135 |
|
|---|
| 136 | #endif
|
|---|