// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4Integrator.icc,v 1.13 2006/06/29 18:59:47 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // Implementation of G4Integrator methods. // // ///////////////////////////////////////////////////////////////////// // // Sympson integration method // ///////////////////////////////////////////////////////////////////// // // Integration of class member functions T::f by Simpson method. template G4double G4Integrator::Simpson( T& typeT, F f, G4double xInitial, G4double xFinal, G4int iterationNumber ) { G4int i ; G4double step = (xFinal - xInitial)/iterationNumber ; G4double x = xInitial ; G4double xPlus = xInitial + 0.5*step ; G4double mean = ( (typeT.*f)(xInitial) + (typeT.*f)(xFinal) )*0.5 ; G4double sum = (typeT.*f)(xPlus) ; for(i=1;i G4double G4Integrator::Simpson( T* ptrT, F f, G4double xInitial, G4double xFinal, G4int iterationNumber ) { G4int i ; G4double step = (xFinal - xInitial)/iterationNumber ; G4double x = xInitial ; G4double xPlus = xInitial + 0.5*step ; G4double mean = ( (ptrT->*f)(xInitial) + (ptrT->*f)(xFinal) )*0.5 ; G4double sum = (ptrT->*f)(xPlus) ; for(i=1;i*f)(x) ; sum += (ptrT->*f)(xPlus) ; } mean += 2.0*sum ; return mean*step/3.0 ; } ///////////////////////////////////////////////////////////////////// // // Integration of class member functions T::f by Simpson method. // Convenient to use, when function f is defined in global scope, i.e. in main() // program template G4double G4Integrator::Simpson( G4double (*f)(G4double), G4double xInitial, G4double xFinal, G4int iterationNumber ) { G4int i ; G4double step = (xFinal - xInitial)/iterationNumber ; G4double x = xInitial ; G4double xPlus = xInitial + 0.5*step ; G4double mean = ( (*f)(xInitial) + (*f)(xFinal) )*0.5 ; G4double sum = (*f)(xPlus) ; for(i=1;i G4double G4Integrator::Gauss( T& typeT, F f, G4double xInitial, G4double xFinal ) { static G4double root = 1.0/std::sqrt(3.0) ; G4double xMean = (xInitial + xFinal)/2.0 ; G4double Step = (xFinal - xInitial)/2.0 ; G4double delta = Step*root ; G4double sum = ((typeT.*f)(xMean + delta) + (typeT.*f)(xMean - delta)) ; return sum*Step ; } ////////////////////////////////////////////////////////////////////// // // template G4double G4Integrator::Gauss( T* ptrT, F f, G4double a, G4double b ) { return Gauss(*ptrT,f,a,b) ; } /////////////////////////////////////////////////////////////////////// // // template G4double G4Integrator::Gauss( G4double (*f)(G4double), G4double xInitial, G4double xFinal) { static G4double root = 1.0/std::sqrt(3.0) ; G4double xMean = (xInitial + xFinal)/2.0 ; G4double Step = (xFinal - xInitial)/2.0 ; G4double delta = Step*root ; G4double sum = ( (*f)(xMean + delta) + (*f)(xMean - delta) ) ; return sum*Step ; } /////////////////////////////////////////////////////////////////////////// // // template void G4Integrator::AdaptGauss( T& typeT, F f, G4double xInitial, G4double xFinal, G4double fTolerance, G4double& sum, G4int& depth ) { if(depth > 100) { G4cout<<"G4Integrator::AdaptGauss: WARNING !!!"< void G4Integrator::AdaptGauss( T* ptrT, F f, G4double xInitial, G4double xFinal, G4double fTolerance, G4double& sum, G4int& depth ) { AdaptGauss(*ptrT,f,xInitial,xFinal,fTolerance,sum,depth) ; } ///////////////////////////////////////////////////////////////////////// // // template void G4Integrator::AdaptGauss( G4double (*f)(G4double), G4double xInitial, G4double xFinal, G4double fTolerance, G4double& sum, G4int& depth ) { if(depth > 100) { G4cout<<"G4SimpleIntegration::AdaptGauss: WARNING !!!"< G4double G4Integrator::AdaptiveGauss( T& typeT, F f, G4double xInitial, G4double xFinal, G4double e ) { G4int depth = 0 ; G4double sum = 0.0 ; AdaptGauss(typeT,f,xInitial,xFinal,e,sum,depth) ; return sum ; } //////////////////////////////////////////////////////////////////////// // // Adaptive Gauss integration with accuracy 'e' // Convenient for using with 'this' pointer template G4double G4Integrator::AdaptiveGauss( T* ptrT, F f, G4double xInitial, G4double xFinal, G4double e ) { return AdaptiveGauss(*ptrT,f,xInitial,xFinal,e) ; } //////////////////////////////////////////////////////////////////////// // // Adaptive Gauss integration with accuracy 'e' // Convenient for using with global scope function f template G4double G4Integrator::AdaptiveGauss( G4double (*f)(G4double), G4double xInitial, G4double xFinal, G4double e ) { G4int depth = 0 ; G4double sum = 0.0 ; AdaptGauss(f,xInitial,xFinal,e,sum,depth) ; return sum ; } //////////////////////////////////////////////////////////////////////////// // Gauss integration methods involving ortogonal polynomials //////////////////////////////////////////////////////////////////////////// // // Methods involving Legendre polynomials // ///////////////////////////////////////////////////////////////////////// // // The value nLegendre set the accuracy required, i.e the number of points // where the function pFunction will be evaluated during integration. // The function creates the arrays for abscissas and weights that used // in Gauss-Legendre quadrature method. // The values a and b are the limits of integration of the function f . // nLegendre MUST BE EVEN !!! // Returns the integral of the function f between a and b, by 2*fNumber point // Gauss-Legendre integration: the function is evaluated exactly // 2*fNumber times at interior points in the range of integration. // Since the weights and abscissas are, in this case, symmetric around // the midpoint of the range of integration, there are actually only // fNumber distinct values of each. // Convenient for using with some class object dataT template G4double G4Integrator::Legendre( T& typeT, F f, G4double a, G4double b, G4int nLegendre ) { G4double newton, newton1, temp1, temp2, temp3, temp ; G4double xDiff, xMean, dx, integral ; const G4double tolerance = 1.6e-10 ; G4int i, j, k = nLegendre ; G4int fNumber = (nLegendre + 1)/2 ; if(2*fNumber != k) { G4Exception("G4Integrator::Legendre(T&,F, ...)", "InvalidCall", FatalException, "Invalid (odd) nLegendre in constructor."); } G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=1;i<=fNumber;i++) // Loop over the desired roots { newton = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation do // loop of Newton's method { temp1 = 1.0 ; temp2 = 0.0 ; for(j=1;j<=k;j++) { temp3 = temp2 ; temp2 = temp1 ; temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ; } temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ; newton1 = newton ; newton = newton1 - temp1/temp ; // Newton's method } while(std::fabs(newton - newton1) > tolerance) ; fAbscissa[fNumber-i] = newton ; fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ; } // // Now we ready to get integral // xMean = 0.5*(a + b) ; xDiff = 0.5*(b - a) ; integral = 0.0 ; for(i=0;i G4double G4Integrator::Legendre( T* ptrT, F f, G4double a, G4double b, G4int nLegendre ) { return Legendre(*ptrT,f,a,b,nLegendre) ; } /////////////////////////////////////////////////////////////////////// // // Convenient for using with global scope function f template G4double G4Integrator::Legendre( G4double (*f)(G4double), G4double a, G4double b, G4int nLegendre) { G4double newton, newton1, temp1, temp2, temp3, temp ; G4double xDiff, xMean, dx, integral ; const G4double tolerance = 1.6e-10 ; G4int i, j, k = nLegendre ; G4int fNumber = (nLegendre + 1)/2 ; if(2*fNumber != k) { G4Exception("G4Integrator::Legendre(...)", "InvalidCall", FatalException, "Invalid (odd) nLegendre in constructor."); } G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=1;i<=fNumber;i++) // Loop over the desired roots { newton = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation do // loop of Newton's method { temp1 = 1.0 ; temp2 = 0.0 ; for(j=1;j<=k;j++) { temp3 = temp2 ; temp2 = temp1 ; temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ; } temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ; newton1 = newton ; newton = newton1 - temp1/temp ; // Newton's method } while(std::fabs(newton - newton1) > tolerance) ; fAbscissa[fNumber-i] = newton ; fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ; } // // Now we ready to get integral // xMean = 0.5*(a + b) ; xDiff = 0.5*(b - a) ; integral = 0.0 ; for(i=0;i G4double G4Integrator::Legendre10( T& typeT, F f,G4double a, G4double b) { G4int i ; G4double xDiff, xMean, dx, integral ; // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 0.679409568299024, 0.865063366688985, 0.973906528517172 } ; static G4double weight[] = { 0.295524224714753, 0.269266719309996, 0.219086362515982, 0.149451349150581, 0.066671344308688 } ; xMean = 0.5*(a + b) ; xDiff = 0.5*(b - a) ; integral = 0.0 ; for(i=0;i<5;i++) { dx = xDiff*abscissa[i] ; integral += weight[i]*( (typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ; } return integral *= xDiff ; } /////////////////////////////////////////////////////////////////////////// // // Convenient for using with the pointer 'this' template G4double G4Integrator::Legendre10( T* ptrT, F f,G4double a, G4double b) { return Legendre10(*ptrT,f,a,b) ; } ////////////////////////////////////////////////////////////////////////// // // Convenient for using with global scope functions template G4double G4Integrator::Legendre10( G4double (*f)(G4double), G4double a, G4double b ) { G4int i ; G4double xDiff, xMean, dx, integral ; // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 0.679409568299024, 0.865063366688985, 0.973906528517172 } ; static G4double weight[] = { 0.295524224714753, 0.269266719309996, 0.219086362515982, 0.149451349150581, 0.066671344308688 } ; xMean = 0.5*(a + b) ; xDiff = 0.5*(b - a) ; integral = 0.0 ; for(i=0;i<5;i++) { dx = xDiff*abscissa[i] ; integral += weight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx)) ; } return integral *= xDiff ; } /////////////////////////////////////////////////////////////////////// // // Returns the integral of the function to be pointed by T::f between a and b, // by 96 point Gauss-Legendre integration: the function is evaluated exactly // ten Times at interior points in the range of integration. Since the weights // and abscissas are, in this case, symmetric around the midpoint of the // range of integration, there are actually only five distinct values of each // Convenient for using with some class object typeT template G4double G4Integrator::Legendre96( T& typeT, F f,G4double a, G4double b) { G4int i ; G4double xDiff, xMean, dx, integral ; // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 static G4double abscissa[] = { 0.016276744849602969579, 0.048812985136049731112, 0.081297495464425558994, 0.113695850110665920911, 0.145973714654896941989, 0.178096882367618602759, // 6 0.210031310460567203603, 0.241743156163840012328, 0.273198812591049141487, 0.304364944354496353024, 0.335208522892625422616, 0.365696861472313635031, // 12 0.395797649828908603285, 0.425478988407300545365, 0.454709422167743008636, 0.483457973920596359768, 0.511694177154667673586, 0.539388108324357436227, // 18 0.566510418561397168404, 0.593032364777572080684, 0.618925840125468570386, 0.644163403784967106798, 0.668718310043916153953, 0.692564536642171561344, // 24 0.715676812348967626225, 0.738030643744400132851, 0.759602341176647498703, 0.780369043867433217604, 0.800308744139140817229, 0.819400310737931675539, // 30 0.837623511228187121494, 0.854959033434601455463, 0.871388505909296502874, 0.886894517402420416057, 0.901460635315852341319, 0.915071423120898074206, // 36 0.927712456722308690965, 0.939370339752755216932, 0.950032717784437635756, 0.959688291448742539300, 0.968326828463264212174, 0.975939174585136466453, // 42 0.982517263563014677447, 0.988054126329623799481, 0.992543900323762624572, 0.995981842987209290650, 0.998364375863181677724, 0.999689503883230766828 // 48 } ; static G4double weight[] = { 0.032550614492363166242, 0.032516118713868835987, 0.032447163714064269364, 0.032343822568575928429, 0.032206204794030250669, 0.032034456231992663218, // 6 0.031828758894411006535, 0.031589330770727168558, 0.031316425596862355813, 0.031010332586313837423, 0.030671376123669149014, 0.030299915420827593794, // 12 0.029896344136328385984, 0.029461089958167905970, 0.028994614150555236543, 0.028497411065085385646, 0.027970007616848334440, 0.027412962726029242823, // 18 0.026826866725591762198, 0.026212340735672413913, 0.025570036005349361499, 0.024900633222483610288, 0.024204841792364691282, 0.023483399085926219842, // 24 0.022737069658329374001, 0.021966644438744349195, 0.021172939892191298988, 0.020356797154333324595, 0.019519081140145022410, 0.018660679627411467385, // 30 0.017782502316045260838, 0.016885479864245172450, 0.015970562902562291381, 0.015038721026994938006, 0.014090941772314860916, 0.013128229566961572637, // 36 0.012151604671088319635, 0.011162102099838498591, 0.010160770535008415758, 0.009148671230783386633, 0.008126876925698759217, 0.007096470791153865269, // 42 0.006058545504235961683, 0.005014202742927517693, 0.003964554338444686674, 0.002910731817934946408, 0.001853960788946921732, 0.000796792065552012429 // 48 } ; xMean = 0.5*(a + b) ; xDiff = 0.5*(b - a) ; integral = 0.0 ; for(i=0;i<48;i++) { dx = xDiff*abscissa[i] ; integral += weight[i]*((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ; } return integral *= xDiff ; } /////////////////////////////////////////////////////////////////////// // // Convenient for using with the pointer 'this' template G4double G4Integrator::Legendre96( T* ptrT, F f,G4double a, G4double b) { return Legendre96(*ptrT,f,a,b) ; } /////////////////////////////////////////////////////////////////////// // // Convenient for using with global scope function f template G4double G4Integrator::Legendre96( G4double (*f)(G4double), G4double a, G4double b ) { G4int i ; G4double xDiff, xMean, dx, integral ; // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 static G4double abscissa[] = { 0.016276744849602969579, 0.048812985136049731112, 0.081297495464425558994, 0.113695850110665920911, 0.145973714654896941989, 0.178096882367618602759, // 6 0.210031310460567203603, 0.241743156163840012328, 0.273198812591049141487, 0.304364944354496353024, 0.335208522892625422616, 0.365696861472313635031, // 12 0.395797649828908603285, 0.425478988407300545365, 0.454709422167743008636, 0.483457973920596359768, 0.511694177154667673586, 0.539388108324357436227, // 18 0.566510418561397168404, 0.593032364777572080684, 0.618925840125468570386, 0.644163403784967106798, 0.668718310043916153953, 0.692564536642171561344, // 24 0.715676812348967626225, 0.738030643744400132851, 0.759602341176647498703, 0.780369043867433217604, 0.800308744139140817229, 0.819400310737931675539, // 30 0.837623511228187121494, 0.854959033434601455463, 0.871388505909296502874, 0.886894517402420416057, 0.901460635315852341319, 0.915071423120898074206, // 36 0.927712456722308690965, 0.939370339752755216932, 0.950032717784437635756, 0.959688291448742539300, 0.968326828463264212174, 0.975939174585136466453, // 42 0.982517263563014677447, 0.988054126329623799481, 0.992543900323762624572, 0.995981842987209290650, 0.998364375863181677724, 0.999689503883230766828 // 48 } ; static G4double weight[] = { 0.032550614492363166242, 0.032516118713868835987, 0.032447163714064269364, 0.032343822568575928429, 0.032206204794030250669, 0.032034456231992663218, // 6 0.031828758894411006535, 0.031589330770727168558, 0.031316425596862355813, 0.031010332586313837423, 0.030671376123669149014, 0.030299915420827593794, // 12 0.029896344136328385984, 0.029461089958167905970, 0.028994614150555236543, 0.028497411065085385646, 0.027970007616848334440, 0.027412962726029242823, // 18 0.026826866725591762198, 0.026212340735672413913, 0.025570036005349361499, 0.024900633222483610288, 0.024204841792364691282, 0.023483399085926219842, // 24 0.022737069658329374001, 0.021966644438744349195, 0.021172939892191298988, 0.020356797154333324595, 0.019519081140145022410, 0.018660679627411467385, // 30 0.017782502316045260838, 0.016885479864245172450, 0.015970562902562291381, 0.015038721026994938006, 0.014090941772314860916, 0.013128229566961572637, // 36 0.012151604671088319635, 0.011162102099838498591, 0.010160770535008415758, 0.009148671230783386633, 0.008126876925698759217, 0.007096470791153865269, // 42 0.006058545504235961683, 0.005014202742927517693, 0.003964554338444686674, 0.002910731817934946408, 0.001853960788946921732, 0.000796792065552012429 // 48 } ; xMean = 0.5*(a + b) ; xDiff = 0.5*(b - a) ; integral = 0.0 ; for(i=0;i<48;i++) { dx = xDiff*abscissa[i] ; integral += weight[i]*((*f)(xMean + dx) + (*f)(xMean - dx)) ; } return integral *= xDiff ; } ////////////////////////////////////////////////////////////////////////////// // // Methods involving Chebyshev polynomials // /////////////////////////////////////////////////////////////////////////// // // Integrates function pointed by T::f from a to b by Gauss-Chebyshev // quadrature method. // Convenient for using with class object typeT template G4double G4Integrator::Chebyshev( T& typeT, F f, G4double a, G4double b, G4int nChebyshev ) { G4int i ; G4double xDiff, xMean, dx, integral = 0.0 ; G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ?? G4double cof = pi/fNumber ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=0;i G4double G4Integrator::Chebyshev( T* ptrT, F f, G4double a, G4double b, G4int n ) { return Chebyshev(*ptrT,f,a,b,n) ; } //////////////////////////////////////////////////////////////////////// // // For use with global scope functions f template G4double G4Integrator::Chebyshev( G4double (*f)(G4double), G4double a, G4double b, G4int nChebyshev ) { G4int i ; G4double xDiff, xMean, dx, integral = 0.0 ; G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ?? G4double cof = pi/fNumber ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=0;i G4double G4Integrator::Laguerre( T& typeT, F f, G4double alpha, G4int nLaguerre ) { const G4double tolerance = 1.0e-10 ; const G4int maxNumber = 12 ; G4int i, j, k ; G4double newton=0., newton1, temp1, temp2, temp3, temp, cofi ; G4double integral = 0.0 ; G4int fNumber = nLaguerre ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=1;i<=fNumber;i++) // Loop over the desired roots { if(i == 1) { newton = (1.0 + alpha)*(3.0 + 0.92*alpha) / (1.0 + 2.4*fNumber + 1.8*alpha) ; } else if(i == 2) { newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ; } else { cofi = i - 2 ; newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi)) * (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ; } for(k=1;k<=maxNumber;k++) { temp1 = 1.0 ; temp2 = 0.0 ; for(j=1;j<=fNumber;j++) { temp3 = temp2 ; temp2 = temp1 ; temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ; } temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ; newton1 = newton ; newton = newton1 - temp1/temp ; if(std::fabs(newton - newton1) <= tolerance) { break ; } } if(k > maxNumber) { G4Exception("G4Integrator::Laguerre(T,F, ...)", "Error", FatalException, "Too many (>12) iterations."); } fAbscissa[i-1] = newton ; fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber) - GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ; } // // Integral evaluation // for(i=0;i G4double G4Integrator::Laguerre( T* ptrT, F f, G4double alpha, G4int nLaguerre ) { return Laguerre(*ptrT,f,alpha,nLaguerre) ; } //////////////////////////////////////////////////////////////////////// // // For use with global scope functions f template G4double G4Integrator::Laguerre( G4double (*f)(G4double), G4double alpha, G4int nLaguerre ) { const G4double tolerance = 1.0e-10 ; const G4int maxNumber = 12 ; G4int i, j, k ; G4double newton=0., newton1, temp1, temp2, temp3, temp, cofi ; G4double integral = 0.0 ; G4int fNumber = nLaguerre ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=1;i<=fNumber;i++) // Loop over the desired roots { if(i == 1) { newton = (1.0 + alpha)*(3.0 + 0.92*alpha) / (1.0 + 2.4*fNumber + 1.8*alpha) ; } else if(i == 2) { newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ; } else { cofi = i - 2 ; newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi)) * (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ; } for(k=1;k<=maxNumber;k++) { temp1 = 1.0 ; temp2 = 0.0 ; for(j=1;j<=fNumber;j++) { temp3 = temp2 ; temp2 = temp1 ; temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ; } temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ; newton1 = newton ; newton = newton1 - temp1/temp ; if(std::fabs(newton - newton1) <= tolerance) { break ; } } if(k > maxNumber) { G4Exception("G4Integrator::Laguerre( ...)", "Error", FatalException, "Too many (>12) iterations."); } fAbscissa[i-1] = newton ; fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber) - GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ; } // // Integral evaluation // for(i=0;i 0. Full accuracy is obtained for // xx > 1. For 0 < xx < 1. the reflection formula (6.1.4) can be used first. // (Adapted from Numerical Recipes in C) // template G4double G4Integrator::GammaLogarithm(G4double xx) { static G4double cof[6] = { 76.18009172947146, -86.50532032941677, 24.01409824083091, -1.231739572450155, 0.1208650973866179e-2, -0.5395239384953e-5 } ; register G4int j; G4double x = xx - 1.0 ; G4double tmp = x + 5.5 ; tmp -= (x + 0.5) * std::log(tmp) ; G4double ser = 1.000000000190015 ; for ( j = 0; j <= 5; j++ ) { x += 1.0 ; ser += cof[j]/x ; } return -tmp + std::log(2.5066282746310005*ser) ; } /////////////////////////////////////////////////////////////////////// // // Method involving Hermite polynomials // /////////////////////////////////////////////////////////////////////// // // // Gauss-Hermite method for integration of std::exp(-x*x)*f(x) // from minus infinity to plus infinity . // template G4double G4Integrator::Hermite( T& typeT, F f, G4int nHermite ) { const G4double tolerance = 1.0e-12 ; const G4int maxNumber = 12 ; G4int i, j, k ; G4double integral = 0.0 ; G4double newton=0., newton1, temp1, temp2, temp3, temp ; G4double piInMinusQ = std::pow(pi,-0.25) ; // 1.0/std::sqrt(std::sqrt(pi)) ?? G4int fNumber = (nHermite +1)/2 ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=1;i<=fNumber;i++) { if(i == 1) { newton = std::sqrt((G4double)(2*nHermite + 1)) - 1.85575001*std::pow((G4double)(2*nHermite + 1),-0.16666999) ; } else if(i == 2) { newton -= 1.14001*std::pow((G4double)nHermite,0.425999)/newton ; } else if(i == 3) { newton = 1.86002*newton - 0.86002*fAbscissa[0] ; } else if(i == 4) { newton = 1.91001*newton - 0.91001*fAbscissa[1] ; } else { newton = 2.0*newton - fAbscissa[i - 3] ; } for(k=1;k<=maxNumber;k++) { temp1 = piInMinusQ ; temp2 = 0.0 ; for(j=1;j<=nHermite;j++) { temp3 = temp2 ; temp2 = temp1 ; temp1 = newton*std::sqrt(2.0/j)*temp2 - std::sqrt(((G4double)(j - 1))/j)*temp3 ; } temp = std::sqrt((G4double)2*nHermite)*temp2 ; newton1 = newton ; newton = newton1 - temp1/temp ; if(std::fabs(newton - newton1) <= tolerance) { break ; } } if(k > maxNumber) { G4Exception("G4Integrator::Hermite(T,F, ...)", "Error", FatalException, "Too many (>12) iterations."); } fAbscissa[i-1] = newton ; fWeight[i-1] = 2.0/(temp*temp) ; } // // Integral calculation // for(i=0;i G4double G4Integrator::Hermite( T* ptrT, F f, G4int n ) { return Hermite(*ptrT,f,n) ; } //////////////////////////////////////////////////////////////////////// // // For use with global scope f template G4double G4Integrator::Hermite( G4double (*f)(G4double), G4int nHermite) { const G4double tolerance = 1.0e-12 ; const G4int maxNumber = 12 ; G4int i, j, k ; G4double integral = 0.0 ; G4double newton=0., newton1, temp1, temp2, temp3, temp ; G4double piInMinusQ = std::pow(pi,-0.25) ; // 1.0/std::sqrt(std::sqrt(pi)) ?? G4int fNumber = (nHermite +1)/2 ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for(i=1;i<=fNumber;i++) { if(i == 1) { newton = std::sqrt((G4double)(2*nHermite + 1)) - 1.85575001*std::pow((G4double)(2*nHermite + 1),-0.16666999) ; } else if(i == 2) { newton -= 1.14001*std::pow((G4double)nHermite,0.425999)/newton ; } else if(i == 3) { newton = 1.86002*newton - 0.86002*fAbscissa[0] ; } else if(i == 4) { newton = 1.91001*newton - 0.91001*fAbscissa[1] ; } else { newton = 2.0*newton - fAbscissa[i - 3] ; } for(k=1;k<=maxNumber;k++) { temp1 = piInMinusQ ; temp2 = 0.0 ; for(j=1;j<=nHermite;j++) { temp3 = temp2 ; temp2 = temp1 ; temp1 = newton*std::sqrt(2.0/j)*temp2 - std::sqrt(((G4double)(j - 1))/j)*temp3 ; } temp = std::sqrt((G4double)2*nHermite)*temp2 ; newton1 = newton ; newton = newton1 - temp1/temp ; if(std::fabs(newton - newton1) <= tolerance) { break ; } } if(k > maxNumber) { G4Exception("G4Integrator::Hermite(...)", "Error", FatalException, "Too many (>12) iterations."); } fAbscissa[i-1] = newton ; fWeight[i-1] = 2.0/(temp*temp) ; } // // Integral calculation // for(i=0;i G4double G4Integrator::Jacobi( T& typeT, F f, G4double alpha, G4double beta, G4int nJacobi) { const G4double tolerance = 1.0e-12 ; const G4double maxNumber = 12 ; G4int i, k, j ; G4double alphaBeta, alphaReduced, betaReduced, root1=0., root2=0., root3=0. ; G4double a, b, c, newton1, newton2, newton3, newton, temp, root=0., rootTemp ; G4int fNumber = nJacobi ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for (i=1;i<=nJacobi;i++) { if (i == 1) { alphaReduced = alpha/nJacobi ; betaReduced = beta/nJacobi ; root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 0.767999*alphaReduced/nJacobi) ; root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced + 0.451998*alphaReduced*alphaReduced + 0.83001*alphaReduced*betaReduced ; root = 1.0-root1/root2 ; } else if (i == 2) { root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ; root -= (1.0-root)*root1*root2*root3 ; } else if (i == 3) { root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; root -= (fAbscissa[0]-root)*root1*root2*root3 ; } else if (i == nJacobi-1) { root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; } else if (i == nJacobi) { root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; } else { root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; } alphaBeta = alpha + beta ; for (k=1;k<=maxNumber;k++) { temp = 2.0 + alphaBeta ; newton1 = (alpha-beta+temp*root)/2.0 ; newton2 = 1.0 ; for (j=2;j<=nJacobi;j++) { newton3 = newton2 ; newton2 = newton1 ; temp = 2*j+alphaBeta ; a = 2*j*(j+alphaBeta)*(temp-2.0) ; b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; newton1 = (b*newton2-c*newton3)/a ; } newton = (nJacobi*(alpha - beta - temp*root)*newton1 + 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/ (temp*(1.0 - root*root)) ; rootTemp = root ; root = rootTemp - newton1/newton ; if (std::fabs(root-rootTemp) <= tolerance) { break ; } } if (k > maxNumber) { G4Exception("G4Integrator::Jacobi(T,F, ...)", "Error", FatalException, "Too many (>12) iterations."); } fAbscissa[i-1] = root ; fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) + GammaLogarithm((G4double)(beta+nJacobi)) - GammaLogarithm((G4double)(nJacobi+1.0)) - GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) *temp*std::pow(2.0,alphaBeta)/(newton*newton2) ; } // // Calculation of the integral // G4double integral = 0.0 ; for(i=0;i G4double G4Integrator::Jacobi( T* ptrT, F f, G4double alpha, G4double beta, G4int n) { return Jacobi(*ptrT,f,alpha,beta,n) ; } ///////////////////////////////////////////////////////////////////////// // // For use with global scope f template G4double G4Integrator::Jacobi( G4double (*f)(G4double), G4double alpha, G4double beta, G4int nJacobi) { const G4double tolerance = 1.0e-12 ; const G4double maxNumber = 12 ; G4int i, k, j ; G4double alphaBeta, alphaReduced, betaReduced, root1=0., root2=0., root3=0. ; G4double a, b, c, newton1, newton2, newton3, newton, temp, root=0., rootTemp ; G4int fNumber = nJacobi ; G4double* fAbscissa = new G4double[fNumber] ; G4double* fWeight = new G4double[fNumber] ; for (i=1;i<=nJacobi;i++) { if (i == 1) { alphaReduced = alpha/nJacobi ; betaReduced = beta/nJacobi ; root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 0.767999*alphaReduced/nJacobi) ; root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced + 0.451998*alphaReduced*alphaReduced + 0.83001*alphaReduced*betaReduced ; root = 1.0-root1/root2 ; } else if (i == 2) { root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ; root -= (1.0-root)*root1*root2*root3 ; } else if (i == 3) { root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; root -= (fAbscissa[0]-root)*root1*root2*root3 ; } else if (i == nJacobi-1) { root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; } else if (i == nJacobi) { root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; } else { root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; } alphaBeta = alpha + beta ; for (k=1;k<=maxNumber;k++) { temp = 2.0 + alphaBeta ; newton1 = (alpha-beta+temp*root)/2.0 ; newton2 = 1.0 ; for (j=2;j<=nJacobi;j++) { newton3 = newton2 ; newton2 = newton1 ; temp = 2*j+alphaBeta ; a = 2*j*(j+alphaBeta)*(temp-2.0) ; b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; newton1 = (b*newton2-c*newton3)/a ; } newton = (nJacobi*(alpha - beta - temp*root)*newton1 + 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2) / (temp*(1.0 - root*root)) ; rootTemp = root ; root = rootTemp - newton1/newton ; if (std::fabs(root-rootTemp) <= tolerance) { break ; } } if (k > maxNumber) { G4Exception("G4Integrator::Jacobi(...)", "Error", FatalException, "Too many (>12) iterations."); } fAbscissa[i-1] = root ; fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) + GammaLogarithm((G4double)(beta+nJacobi)) - GammaLogarithm((G4double)(nJacobi+1.0)) - GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) *temp*std::pow(2.0,alphaBeta)/(newton*newton2); } // // Calculation of the integral // G4double integral = 0.0 ; for(i=0;i