| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Integrator.icc,v 1.13 2006/06/29 18:59:47 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // Implementation of G4Integrator methods.
|
|---|
| 31 | //
|
|---|
| 32 | //
|
|---|
| 33 |
|
|---|
| 34 | /////////////////////////////////////////////////////////////////////
|
|---|
| 35 | //
|
|---|
| 36 | // Sympson integration method
|
|---|
| 37 | //
|
|---|
| 38 | /////////////////////////////////////////////////////////////////////
|
|---|
| 39 | //
|
|---|
| 40 | // Integration of class member functions T::f by Simpson method.
|
|---|
| 41 |
|
|---|
| 42 | template <class T, class F>
|
|---|
| 43 | G4double G4Integrator<T,F>::Simpson( T& typeT,
|
|---|
| 44 | F f,
|
|---|
| 45 | G4double xInitial,
|
|---|
| 46 | G4double xFinal,
|
|---|
| 47 | G4int iterationNumber )
|
|---|
| 48 | {
|
|---|
| 49 | G4int i ;
|
|---|
| 50 | G4double step = (xFinal - xInitial)/iterationNumber ;
|
|---|
| 51 | G4double x = xInitial ;
|
|---|
| 52 | G4double xPlus = xInitial + 0.5*step ;
|
|---|
| 53 | G4double mean = ( (typeT.*f)(xInitial) + (typeT.*f)(xFinal) )*0.5 ;
|
|---|
| 54 | G4double sum = (typeT.*f)(xPlus) ;
|
|---|
| 55 |
|
|---|
| 56 | for(i=1;i<iterationNumber;i++)
|
|---|
| 57 | {
|
|---|
| 58 | x += step ;
|
|---|
| 59 | xPlus += step ;
|
|---|
| 60 | mean += (typeT.*f)(x) ;
|
|---|
| 61 | sum += (typeT.*f)(xPlus) ;
|
|---|
| 62 | }
|
|---|
| 63 | mean += 2.0*sum ;
|
|---|
| 64 |
|
|---|
| 65 | return mean*step/3.0 ;
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 | /////////////////////////////////////////////////////////////////////
|
|---|
| 69 | //
|
|---|
| 70 | // Integration of class member functions T::f by Simpson method.
|
|---|
| 71 | // Convenient to use with 'this' pointer
|
|---|
| 72 |
|
|---|
| 73 | template <class T, class F>
|
|---|
| 74 | G4double G4Integrator<T,F>::Simpson( T* ptrT,
|
|---|
| 75 | F f,
|
|---|
| 76 | G4double xInitial,
|
|---|
| 77 | G4double xFinal,
|
|---|
| 78 | G4int iterationNumber )
|
|---|
| 79 | {
|
|---|
| 80 | G4int i ;
|
|---|
| 81 | G4double step = (xFinal - xInitial)/iterationNumber ;
|
|---|
| 82 | G4double x = xInitial ;
|
|---|
| 83 | G4double xPlus = xInitial + 0.5*step ;
|
|---|
| 84 | G4double mean = ( (ptrT->*f)(xInitial) + (ptrT->*f)(xFinal) )*0.5 ;
|
|---|
| 85 | G4double sum = (ptrT->*f)(xPlus) ;
|
|---|
| 86 |
|
|---|
| 87 | for(i=1;i<iterationNumber;i++)
|
|---|
| 88 | {
|
|---|
| 89 | x += step ;
|
|---|
| 90 | xPlus += step ;
|
|---|
| 91 | mean += (ptrT->*f)(x) ;
|
|---|
| 92 | sum += (ptrT->*f)(xPlus) ;
|
|---|
| 93 | }
|
|---|
| 94 | mean += 2.0*sum ;
|
|---|
| 95 |
|
|---|
| 96 | return mean*step/3.0 ;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | /////////////////////////////////////////////////////////////////////
|
|---|
| 100 | //
|
|---|
| 101 | // Integration of class member functions T::f by Simpson method.
|
|---|
| 102 | // Convenient to use, when function f is defined in global scope, i.e. in main()
|
|---|
| 103 | // program
|
|---|
| 104 |
|
|---|
| 105 | template <class T, class F>
|
|---|
| 106 | G4double G4Integrator<T,F>::Simpson( G4double (*f)(G4double),
|
|---|
| 107 | G4double xInitial,
|
|---|
| 108 | G4double xFinal,
|
|---|
| 109 | G4int iterationNumber )
|
|---|
| 110 | {
|
|---|
| 111 | G4int i ;
|
|---|
| 112 | G4double step = (xFinal - xInitial)/iterationNumber ;
|
|---|
| 113 | G4double x = xInitial ;
|
|---|
| 114 | G4double xPlus = xInitial + 0.5*step ;
|
|---|
| 115 | G4double mean = ( (*f)(xInitial) + (*f)(xFinal) )*0.5 ;
|
|---|
| 116 | G4double sum = (*f)(xPlus) ;
|
|---|
| 117 |
|
|---|
| 118 | for(i=1;i<iterationNumber;i++)
|
|---|
| 119 | {
|
|---|
| 120 | x += step ;
|
|---|
| 121 | xPlus += step ;
|
|---|
| 122 | mean += (*f)(x) ;
|
|---|
| 123 | sum += (*f)(xPlus) ;
|
|---|
| 124 | }
|
|---|
| 125 | mean += 2.0*sum ;
|
|---|
| 126 |
|
|---|
| 127 | return mean*step/3.0 ;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 131 | //
|
|---|
| 132 | // Adaptive Gauss method
|
|---|
| 133 | //
|
|---|
| 134 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 135 | //
|
|---|
| 136 | //
|
|---|
| 137 |
|
|---|
| 138 | template <class T, class F>
|
|---|
| 139 | G4double G4Integrator<T,F>::Gauss( T& typeT, F f,
|
|---|
| 140 | G4double xInitial, G4double xFinal )
|
|---|
| 141 | {
|
|---|
| 142 | static G4double root = 1.0/std::sqrt(3.0) ;
|
|---|
| 143 |
|
|---|
| 144 | G4double xMean = (xInitial + xFinal)/2.0 ;
|
|---|
| 145 | G4double Step = (xFinal - xInitial)/2.0 ;
|
|---|
| 146 | G4double delta = Step*root ;
|
|---|
| 147 | G4double sum = ((typeT.*f)(xMean + delta) +
|
|---|
| 148 | (typeT.*f)(xMean - delta)) ;
|
|---|
| 149 |
|
|---|
| 150 | return sum*Step ;
|
|---|
| 151 | }
|
|---|
| 152 |
|
|---|
| 153 | //////////////////////////////////////////////////////////////////////
|
|---|
| 154 | //
|
|---|
| 155 | //
|
|---|
| 156 |
|
|---|
| 157 | template <class T, class F> G4double
|
|---|
| 158 | G4Integrator<T,F>::Gauss( T* ptrT, F f, G4double a, G4double b )
|
|---|
| 159 | {
|
|---|
| 160 | return Gauss(*ptrT,f,a,b) ;
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 164 | //
|
|---|
| 165 | //
|
|---|
| 166 |
|
|---|
| 167 | template <class T, class F>
|
|---|
| 168 | G4double G4Integrator<T,F>::Gauss( G4double (*f)(G4double),
|
|---|
| 169 | G4double xInitial, G4double xFinal)
|
|---|
| 170 | {
|
|---|
| 171 | static G4double root = 1.0/std::sqrt(3.0) ;
|
|---|
| 172 |
|
|---|
| 173 | G4double xMean = (xInitial + xFinal)/2.0 ;
|
|---|
| 174 | G4double Step = (xFinal - xInitial)/2.0 ;
|
|---|
| 175 | G4double delta = Step*root ;
|
|---|
| 176 | G4double sum = ( (*f)(xMean + delta) + (*f)(xMean - delta) ) ;
|
|---|
| 177 |
|
|---|
| 178 | return sum*Step ;
|
|---|
| 179 | }
|
|---|
| 180 |
|
|---|
| 181 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 182 | //
|
|---|
| 183 | //
|
|---|
| 184 |
|
|---|
| 185 | template <class T, class F>
|
|---|
| 186 | void G4Integrator<T,F>::AdaptGauss( T& typeT, F f, G4double xInitial,
|
|---|
| 187 | G4double xFinal, G4double fTolerance,
|
|---|
| 188 | G4double& sum,
|
|---|
| 189 | G4int& depth )
|
|---|
| 190 | {
|
|---|
| 191 | if(depth > 100)
|
|---|
| 192 | {
|
|---|
| 193 | G4cout<<"G4Integrator<T,F>::AdaptGauss: WARNING !!!"<<G4endl ;
|
|---|
| 194 | G4cout<<"Function varies too rapidly to get stated accuracy in 100 steps "
|
|---|
| 195 | <<G4endl ;
|
|---|
| 196 |
|
|---|
| 197 | return ;
|
|---|
| 198 | }
|
|---|
| 199 | G4double xMean = (xInitial + xFinal)/2.0 ;
|
|---|
| 200 | G4double leftHalf = Gauss(typeT,f,xInitial,xMean) ;
|
|---|
| 201 | G4double rightHalf = Gauss(typeT,f,xMean,xFinal) ;
|
|---|
| 202 | G4double full = Gauss(typeT,f,xInitial,xFinal) ;
|
|---|
| 203 | if(std::fabs(leftHalf+rightHalf-full) < fTolerance)
|
|---|
| 204 | {
|
|---|
| 205 | sum += full ;
|
|---|
| 206 | }
|
|---|
| 207 | else
|
|---|
| 208 | {
|
|---|
| 209 | depth++ ;
|
|---|
| 210 | AdaptGauss(typeT,f,xInitial,xMean,fTolerance,sum,depth) ;
|
|---|
| 211 | AdaptGauss(typeT,f,xMean,xFinal,fTolerance,sum,depth) ;
|
|---|
| 212 | }
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | template <class T, class F>
|
|---|
| 216 | void G4Integrator<T,F>::AdaptGauss( T* ptrT, F f, G4double xInitial,
|
|---|
| 217 | G4double xFinal, G4double fTolerance,
|
|---|
| 218 | G4double& sum,
|
|---|
| 219 | G4int& depth )
|
|---|
| 220 | {
|
|---|
| 221 | AdaptGauss(*ptrT,f,xInitial,xFinal,fTolerance,sum,depth) ;
|
|---|
| 222 | }
|
|---|
| 223 |
|
|---|
| 224 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 225 | //
|
|---|
| 226 | //
|
|---|
| 227 | template <class T, class F>
|
|---|
| 228 | void G4Integrator<T,F>::AdaptGauss( G4double (*f)(G4double),
|
|---|
| 229 | G4double xInitial, G4double xFinal,
|
|---|
| 230 | G4double fTolerance, G4double& sum,
|
|---|
| 231 | G4int& depth )
|
|---|
| 232 | {
|
|---|
| 233 | if(depth > 100)
|
|---|
| 234 | {
|
|---|
| 235 | G4cout<<"G4SimpleIntegration::AdaptGauss: WARNING !!!"<<G4endl ;
|
|---|
| 236 | G4cout<<"Function varies too rapidly to get stated accuracy in 100 steps "
|
|---|
| 237 | <<G4endl ;
|
|---|
| 238 |
|
|---|
| 239 | return ;
|
|---|
| 240 | }
|
|---|
| 241 | G4double xMean = (xInitial + xFinal)/2.0 ;
|
|---|
| 242 | G4double leftHalf = Gauss(f,xInitial,xMean) ;
|
|---|
| 243 | G4double rightHalf = Gauss(f,xMean,xFinal) ;
|
|---|
| 244 | G4double full = Gauss(f,xInitial,xFinal) ;
|
|---|
| 245 | if(std::fabs(leftHalf+rightHalf-full) < fTolerance)
|
|---|
| 246 | {
|
|---|
| 247 | sum += full ;
|
|---|
| 248 | }
|
|---|
| 249 | else
|
|---|
| 250 | {
|
|---|
| 251 | depth++ ;
|
|---|
| 252 | AdaptGauss(f,xInitial,xMean,fTolerance,sum,depth) ;
|
|---|
| 253 | AdaptGauss(f,xMean,xFinal,fTolerance,sum,depth) ;
|
|---|
| 254 | }
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 258 | //
|
|---|
| 259 | // Adaptive Gauss integration with accuracy 'e'
|
|---|
| 260 | // Convenient for using with class object typeT
|
|---|
| 261 |
|
|---|
| 262 | template<class T, class F>
|
|---|
| 263 | G4double G4Integrator<T,F>::AdaptiveGauss( T& typeT, F f, G4double xInitial,
|
|---|
| 264 | G4double xFinal, G4double e )
|
|---|
| 265 | {
|
|---|
| 266 | G4int depth = 0 ;
|
|---|
| 267 | G4double sum = 0.0 ;
|
|---|
| 268 | AdaptGauss(typeT,f,xInitial,xFinal,e,sum,depth) ;
|
|---|
| 269 | return sum ;
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 273 | //
|
|---|
| 274 | // Adaptive Gauss integration with accuracy 'e'
|
|---|
| 275 | // Convenient for using with 'this' pointer
|
|---|
| 276 |
|
|---|
| 277 | template<class T, class F>
|
|---|
| 278 | G4double G4Integrator<T,F>::AdaptiveGauss( T* ptrT, F f, G4double xInitial,
|
|---|
| 279 | G4double xFinal, G4double e )
|
|---|
| 280 | {
|
|---|
| 281 | return AdaptiveGauss(*ptrT,f,xInitial,xFinal,e) ;
|
|---|
| 282 | }
|
|---|
| 283 |
|
|---|
| 284 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 285 | //
|
|---|
| 286 | // Adaptive Gauss integration with accuracy 'e'
|
|---|
| 287 | // Convenient for using with global scope function f
|
|---|
| 288 |
|
|---|
| 289 | template <class T, class F>
|
|---|
| 290 | G4double G4Integrator<T,F>::AdaptiveGauss( G4double (*f)(G4double),
|
|---|
| 291 | G4double xInitial, G4double xFinal, G4double e )
|
|---|
| 292 | {
|
|---|
| 293 | G4int depth = 0 ;
|
|---|
| 294 | G4double sum = 0.0 ;
|
|---|
| 295 | AdaptGauss(f,xInitial,xFinal,e,sum,depth) ;
|
|---|
| 296 | return sum ;
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 300 | // Gauss integration methods involving ortogonal polynomials
|
|---|
| 301 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 302 | //
|
|---|
| 303 | // Methods involving Legendre polynomials
|
|---|
| 304 | //
|
|---|
| 305 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 306 | //
|
|---|
| 307 | // The value nLegendre set the accuracy required, i.e the number of points
|
|---|
| 308 | // where the function pFunction will be evaluated during integration.
|
|---|
| 309 | // The function creates the arrays for abscissas and weights that used
|
|---|
| 310 | // in Gauss-Legendre quadrature method.
|
|---|
| 311 | // The values a and b are the limits of integration of the function f .
|
|---|
| 312 | // nLegendre MUST BE EVEN !!!
|
|---|
| 313 | // Returns the integral of the function f between a and b, by 2*fNumber point
|
|---|
| 314 | // Gauss-Legendre integration: the function is evaluated exactly
|
|---|
| 315 | // 2*fNumber times at interior points in the range of integration.
|
|---|
| 316 | // Since the weights and abscissas are, in this case, symmetric around
|
|---|
| 317 | // the midpoint of the range of integration, there are actually only
|
|---|
| 318 | // fNumber distinct values of each.
|
|---|
| 319 | // Convenient for using with some class object dataT
|
|---|
| 320 |
|
|---|
| 321 | template <class T, class F>
|
|---|
| 322 | G4double G4Integrator<T,F>::Legendre( T& typeT, F f, G4double a, G4double b,
|
|---|
| 323 | G4int nLegendre )
|
|---|
| 324 | {
|
|---|
| 325 | G4double newton, newton1, temp1, temp2, temp3, temp ;
|
|---|
| 326 | G4double xDiff, xMean, dx, integral ;
|
|---|
| 327 |
|
|---|
| 328 | const G4double tolerance = 1.6e-10 ;
|
|---|
| 329 | G4int i, j, k = nLegendre ;
|
|---|
| 330 | G4int fNumber = (nLegendre + 1)/2 ;
|
|---|
| 331 |
|
|---|
| 332 | if(2*fNumber != k)
|
|---|
| 333 | {
|
|---|
| 334 | G4Exception("G4Integrator<T,F>::Legendre(T&,F, ...)", "InvalidCall",
|
|---|
| 335 | FatalException, "Invalid (odd) nLegendre in constructor.");
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 339 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 340 |
|
|---|
| 341 | for(i=1;i<=fNumber;i++) // Loop over the desired roots
|
|---|
| 342 | {
|
|---|
| 343 | newton = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation
|
|---|
| 344 |
|
|---|
| 345 | do // loop of Newton's method
|
|---|
| 346 | {
|
|---|
| 347 | temp1 = 1.0 ;
|
|---|
| 348 | temp2 = 0.0 ;
|
|---|
| 349 | for(j=1;j<=k;j++)
|
|---|
| 350 | {
|
|---|
| 351 | temp3 = temp2 ;
|
|---|
| 352 | temp2 = temp1 ;
|
|---|
| 353 | temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ;
|
|---|
| 354 | }
|
|---|
| 355 | temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ;
|
|---|
| 356 | newton1 = newton ;
|
|---|
| 357 | newton = newton1 - temp1/temp ; // Newton's method
|
|---|
| 358 | }
|
|---|
| 359 | while(std::fabs(newton - newton1) > tolerance) ;
|
|---|
| 360 |
|
|---|
| 361 | fAbscissa[fNumber-i] = newton ;
|
|---|
| 362 | fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ;
|
|---|
| 363 | }
|
|---|
| 364 |
|
|---|
| 365 | //
|
|---|
| 366 | // Now we ready to get integral
|
|---|
| 367 | //
|
|---|
| 368 |
|
|---|
| 369 | xMean = 0.5*(a + b) ;
|
|---|
| 370 | xDiff = 0.5*(b - a) ;
|
|---|
| 371 | integral = 0.0 ;
|
|---|
| 372 | for(i=0;i<fNumber;i++)
|
|---|
| 373 | {
|
|---|
| 374 | dx = xDiff*fAbscissa[i] ;
|
|---|
| 375 | integral += fWeight[i]*( (typeT.*f)(xMean + dx) +
|
|---|
| 376 | (typeT.*f)(xMean - dx) ) ;
|
|---|
| 377 | }
|
|---|
| 378 | delete[] fAbscissa;
|
|---|
| 379 | delete[] fWeight;
|
|---|
| 380 | return integral *= xDiff ;
|
|---|
| 381 | }
|
|---|
| 382 |
|
|---|
| 383 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 384 | //
|
|---|
| 385 | // Convenient for using with the pointer 'this'
|
|---|
| 386 |
|
|---|
| 387 | template <class T, class F>
|
|---|
| 388 | G4double G4Integrator<T,F>::Legendre( T* ptrT, F f, G4double a,
|
|---|
| 389 | G4double b, G4int nLegendre )
|
|---|
| 390 | {
|
|---|
| 391 | return Legendre(*ptrT,f,a,b,nLegendre) ;
|
|---|
| 392 | }
|
|---|
| 393 |
|
|---|
| 394 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 395 | //
|
|---|
| 396 | // Convenient for using with global scope function f
|
|---|
| 397 |
|
|---|
| 398 | template <class T, class F>
|
|---|
| 399 | G4double G4Integrator<T,F>::Legendre( G4double (*f)(G4double),
|
|---|
| 400 | G4double a, G4double b, G4int nLegendre)
|
|---|
| 401 | {
|
|---|
| 402 | G4double newton, newton1, temp1, temp2, temp3, temp ;
|
|---|
| 403 | G4double xDiff, xMean, dx, integral ;
|
|---|
| 404 |
|
|---|
| 405 | const G4double tolerance = 1.6e-10 ;
|
|---|
| 406 | G4int i, j, k = nLegendre ;
|
|---|
| 407 | G4int fNumber = (nLegendre + 1)/2 ;
|
|---|
| 408 |
|
|---|
| 409 | if(2*fNumber != k)
|
|---|
| 410 | {
|
|---|
| 411 | G4Exception("G4Integrator<T,F>::Legendre(...)", "InvalidCall",
|
|---|
| 412 | FatalException, "Invalid (odd) nLegendre in constructor.");
|
|---|
| 413 | }
|
|---|
| 414 |
|
|---|
| 415 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 416 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 417 |
|
|---|
| 418 | for(i=1;i<=fNumber;i++) // Loop over the desired roots
|
|---|
| 419 | {
|
|---|
| 420 | newton = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation
|
|---|
| 421 |
|
|---|
| 422 | do // loop of Newton's method
|
|---|
| 423 | {
|
|---|
| 424 | temp1 = 1.0 ;
|
|---|
| 425 | temp2 = 0.0 ;
|
|---|
| 426 | for(j=1;j<=k;j++)
|
|---|
| 427 | {
|
|---|
| 428 | temp3 = temp2 ;
|
|---|
| 429 | temp2 = temp1 ;
|
|---|
| 430 | temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ;
|
|---|
| 431 | }
|
|---|
| 432 | temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ;
|
|---|
| 433 | newton1 = newton ;
|
|---|
| 434 | newton = newton1 - temp1/temp ; // Newton's method
|
|---|
| 435 | }
|
|---|
| 436 | while(std::fabs(newton - newton1) > tolerance) ;
|
|---|
| 437 |
|
|---|
| 438 | fAbscissa[fNumber-i] = newton ;
|
|---|
| 439 | fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ;
|
|---|
| 440 | }
|
|---|
| 441 |
|
|---|
| 442 | //
|
|---|
| 443 | // Now we ready to get integral
|
|---|
| 444 | //
|
|---|
| 445 |
|
|---|
| 446 | xMean = 0.5*(a + b) ;
|
|---|
| 447 | xDiff = 0.5*(b - a) ;
|
|---|
| 448 | integral = 0.0 ;
|
|---|
| 449 | for(i=0;i<fNumber;i++)
|
|---|
| 450 | {
|
|---|
| 451 | dx = xDiff*fAbscissa[i] ;
|
|---|
| 452 | integral += fWeight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx) ) ;
|
|---|
| 453 | }
|
|---|
| 454 | delete[] fAbscissa;
|
|---|
| 455 | delete[] fWeight;
|
|---|
| 456 |
|
|---|
| 457 | return integral *= xDiff ;
|
|---|
| 458 | }
|
|---|
| 459 |
|
|---|
| 460 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 461 | //
|
|---|
| 462 | // Returns the integral of the function to be pointed by T::f between a and b,
|
|---|
| 463 | // by ten point Gauss-Legendre integration: the function is evaluated exactly
|
|---|
| 464 | // ten times at interior points in the range of integration. Since the weights
|
|---|
| 465 | // and abscissas are, in this case, symmetric around the midpoint of the
|
|---|
| 466 | // range of integration, there are actually only five distinct values of each
|
|---|
| 467 | // Convenient for using with class object typeT
|
|---|
| 468 |
|
|---|
| 469 | template <class T, class F>
|
|---|
| 470 | G4double G4Integrator<T,F>::Legendre10( T& typeT, F f,G4double a, G4double b)
|
|---|
| 471 | {
|
|---|
| 472 | G4int i ;
|
|---|
| 473 | G4double xDiff, xMean, dx, integral ;
|
|---|
| 474 |
|
|---|
| 475 | // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
|
|---|
| 476 |
|
|---|
| 477 | static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
|
|---|
| 478 | 0.679409568299024, 0.865063366688985,
|
|---|
| 479 | 0.973906528517172 } ;
|
|---|
| 480 |
|
|---|
| 481 | static G4double weight[] = { 0.295524224714753, 0.269266719309996,
|
|---|
| 482 | 0.219086362515982, 0.149451349150581,
|
|---|
| 483 | 0.066671344308688 } ;
|
|---|
| 484 | xMean = 0.5*(a + b) ;
|
|---|
| 485 | xDiff = 0.5*(b - a) ;
|
|---|
| 486 | integral = 0.0 ;
|
|---|
| 487 | for(i=0;i<5;i++)
|
|---|
| 488 | {
|
|---|
| 489 | dx = xDiff*abscissa[i] ;
|
|---|
| 490 | integral += weight[i]*( (typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ;
|
|---|
| 491 | }
|
|---|
| 492 | return integral *= xDiff ;
|
|---|
| 493 | }
|
|---|
| 494 |
|
|---|
| 495 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 496 | //
|
|---|
| 497 | // Convenient for using with the pointer 'this'
|
|---|
| 498 |
|
|---|
| 499 | template <class T, class F>
|
|---|
| 500 | G4double G4Integrator<T,F>::Legendre10( T* ptrT, F f,G4double a, G4double b)
|
|---|
| 501 | {
|
|---|
| 502 | return Legendre10(*ptrT,f,a,b) ;
|
|---|
| 503 | }
|
|---|
| 504 |
|
|---|
| 505 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 506 | //
|
|---|
| 507 | // Convenient for using with global scope functions
|
|---|
| 508 |
|
|---|
| 509 | template <class T, class F>
|
|---|
| 510 | G4double G4Integrator<T,F>::Legendre10( G4double (*f)(G4double),
|
|---|
| 511 | G4double a, G4double b )
|
|---|
| 512 | {
|
|---|
| 513 | G4int i ;
|
|---|
| 514 | G4double xDiff, xMean, dx, integral ;
|
|---|
| 515 |
|
|---|
| 516 | // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
|
|---|
| 517 |
|
|---|
| 518 | static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
|
|---|
| 519 | 0.679409568299024, 0.865063366688985,
|
|---|
| 520 | 0.973906528517172 } ;
|
|---|
| 521 |
|
|---|
| 522 | static G4double weight[] = { 0.295524224714753, 0.269266719309996,
|
|---|
| 523 | 0.219086362515982, 0.149451349150581,
|
|---|
| 524 | 0.066671344308688 } ;
|
|---|
| 525 | xMean = 0.5*(a + b) ;
|
|---|
| 526 | xDiff = 0.5*(b - a) ;
|
|---|
| 527 | integral = 0.0 ;
|
|---|
| 528 | for(i=0;i<5;i++)
|
|---|
| 529 | {
|
|---|
| 530 | dx = xDiff*abscissa[i] ;
|
|---|
| 531 | integral += weight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx)) ;
|
|---|
| 532 | }
|
|---|
| 533 | return integral *= xDiff ;
|
|---|
| 534 | }
|
|---|
| 535 |
|
|---|
| 536 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 537 | //
|
|---|
| 538 | // Returns the integral of the function to be pointed by T::f between a and b,
|
|---|
| 539 | // by 96 point Gauss-Legendre integration: the function is evaluated exactly
|
|---|
| 540 | // ten Times at interior points in the range of integration. Since the weights
|
|---|
| 541 | // and abscissas are, in this case, symmetric around the midpoint of the
|
|---|
| 542 | // range of integration, there are actually only five distinct values of each
|
|---|
| 543 | // Convenient for using with some class object typeT
|
|---|
| 544 |
|
|---|
| 545 | template <class T, class F>
|
|---|
| 546 | G4double G4Integrator<T,F>::Legendre96( T& typeT, F f,G4double a, G4double b)
|
|---|
| 547 | {
|
|---|
| 548 | G4int i ;
|
|---|
| 549 | G4double xDiff, xMean, dx, integral ;
|
|---|
| 550 |
|
|---|
| 551 | // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
|
|---|
| 552 |
|
|---|
| 553 | static G4double
|
|---|
| 554 | abscissa[] = {
|
|---|
| 555 | 0.016276744849602969579, 0.048812985136049731112,
|
|---|
| 556 | 0.081297495464425558994, 0.113695850110665920911,
|
|---|
| 557 | 0.145973714654896941989, 0.178096882367618602759, // 6
|
|---|
| 558 |
|
|---|
| 559 | 0.210031310460567203603, 0.241743156163840012328,
|
|---|
| 560 | 0.273198812591049141487, 0.304364944354496353024,
|
|---|
| 561 | 0.335208522892625422616, 0.365696861472313635031, // 12
|
|---|
| 562 |
|
|---|
| 563 | 0.395797649828908603285, 0.425478988407300545365,
|
|---|
| 564 | 0.454709422167743008636, 0.483457973920596359768,
|
|---|
| 565 | 0.511694177154667673586, 0.539388108324357436227, // 18
|
|---|
| 566 |
|
|---|
| 567 | 0.566510418561397168404, 0.593032364777572080684,
|
|---|
| 568 | 0.618925840125468570386, 0.644163403784967106798,
|
|---|
| 569 | 0.668718310043916153953, 0.692564536642171561344, // 24
|
|---|
| 570 |
|
|---|
| 571 | 0.715676812348967626225, 0.738030643744400132851,
|
|---|
| 572 | 0.759602341176647498703, 0.780369043867433217604,
|
|---|
| 573 | 0.800308744139140817229, 0.819400310737931675539, // 30
|
|---|
| 574 |
|
|---|
| 575 | 0.837623511228187121494, 0.854959033434601455463,
|
|---|
| 576 | 0.871388505909296502874, 0.886894517402420416057,
|
|---|
| 577 | 0.901460635315852341319, 0.915071423120898074206, // 36
|
|---|
| 578 |
|
|---|
| 579 | 0.927712456722308690965, 0.939370339752755216932,
|
|---|
| 580 | 0.950032717784437635756, 0.959688291448742539300,
|
|---|
| 581 | 0.968326828463264212174, 0.975939174585136466453, // 42
|
|---|
| 582 |
|
|---|
| 583 | 0.982517263563014677447, 0.988054126329623799481,
|
|---|
| 584 | 0.992543900323762624572, 0.995981842987209290650,
|
|---|
| 585 | 0.998364375863181677724, 0.999689503883230766828 // 48
|
|---|
| 586 | } ;
|
|---|
| 587 |
|
|---|
| 588 | static G4double
|
|---|
| 589 | weight[] = {
|
|---|
| 590 | 0.032550614492363166242, 0.032516118713868835987,
|
|---|
| 591 | 0.032447163714064269364, 0.032343822568575928429,
|
|---|
| 592 | 0.032206204794030250669, 0.032034456231992663218, // 6
|
|---|
| 593 |
|
|---|
| 594 | 0.031828758894411006535, 0.031589330770727168558,
|
|---|
| 595 | 0.031316425596862355813, 0.031010332586313837423,
|
|---|
| 596 | 0.030671376123669149014, 0.030299915420827593794, // 12
|
|---|
| 597 |
|
|---|
| 598 | 0.029896344136328385984, 0.029461089958167905970,
|
|---|
| 599 | 0.028994614150555236543, 0.028497411065085385646,
|
|---|
| 600 | 0.027970007616848334440, 0.027412962726029242823, // 18
|
|---|
| 601 |
|
|---|
| 602 | 0.026826866725591762198, 0.026212340735672413913,
|
|---|
| 603 | 0.025570036005349361499, 0.024900633222483610288,
|
|---|
| 604 | 0.024204841792364691282, 0.023483399085926219842, // 24
|
|---|
| 605 |
|
|---|
| 606 | 0.022737069658329374001, 0.021966644438744349195,
|
|---|
| 607 | 0.021172939892191298988, 0.020356797154333324595,
|
|---|
| 608 | 0.019519081140145022410, 0.018660679627411467385, // 30
|
|---|
| 609 |
|
|---|
| 610 | 0.017782502316045260838, 0.016885479864245172450,
|
|---|
| 611 | 0.015970562902562291381, 0.015038721026994938006,
|
|---|
| 612 | 0.014090941772314860916, 0.013128229566961572637, // 36
|
|---|
| 613 |
|
|---|
| 614 | 0.012151604671088319635, 0.011162102099838498591,
|
|---|
| 615 | 0.010160770535008415758, 0.009148671230783386633,
|
|---|
| 616 | 0.008126876925698759217, 0.007096470791153865269, // 42
|
|---|
| 617 |
|
|---|
| 618 | 0.006058545504235961683, 0.005014202742927517693,
|
|---|
| 619 | 0.003964554338444686674, 0.002910731817934946408,
|
|---|
| 620 | 0.001853960788946921732, 0.000796792065552012429 // 48
|
|---|
| 621 | } ;
|
|---|
| 622 | xMean = 0.5*(a + b) ;
|
|---|
| 623 | xDiff = 0.5*(b - a) ;
|
|---|
| 624 | integral = 0.0 ;
|
|---|
| 625 | for(i=0;i<48;i++)
|
|---|
| 626 | {
|
|---|
| 627 | dx = xDiff*abscissa[i] ;
|
|---|
| 628 | integral += weight[i]*((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ;
|
|---|
| 629 | }
|
|---|
| 630 | return integral *= xDiff ;
|
|---|
| 631 | }
|
|---|
| 632 |
|
|---|
| 633 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 634 | //
|
|---|
| 635 | // Convenient for using with the pointer 'this'
|
|---|
| 636 |
|
|---|
| 637 | template <class T, class F>
|
|---|
| 638 | G4double G4Integrator<T,F>::Legendre96( T* ptrT, F f,G4double a, G4double b)
|
|---|
| 639 | {
|
|---|
| 640 | return Legendre96(*ptrT,f,a,b) ;
|
|---|
| 641 | }
|
|---|
| 642 |
|
|---|
| 643 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 644 | //
|
|---|
| 645 | // Convenient for using with global scope function f
|
|---|
| 646 |
|
|---|
| 647 | template <class T, class F>
|
|---|
| 648 | G4double G4Integrator<T,F>::Legendre96( G4double (*f)(G4double),
|
|---|
| 649 | G4double a, G4double b )
|
|---|
| 650 | {
|
|---|
| 651 | G4int i ;
|
|---|
| 652 | G4double xDiff, xMean, dx, integral ;
|
|---|
| 653 |
|
|---|
| 654 | // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
|
|---|
| 655 |
|
|---|
| 656 | static G4double
|
|---|
| 657 | abscissa[] = {
|
|---|
| 658 | 0.016276744849602969579, 0.048812985136049731112,
|
|---|
| 659 | 0.081297495464425558994, 0.113695850110665920911,
|
|---|
| 660 | 0.145973714654896941989, 0.178096882367618602759, // 6
|
|---|
| 661 |
|
|---|
| 662 | 0.210031310460567203603, 0.241743156163840012328,
|
|---|
| 663 | 0.273198812591049141487, 0.304364944354496353024,
|
|---|
| 664 | 0.335208522892625422616, 0.365696861472313635031, // 12
|
|---|
| 665 |
|
|---|
| 666 | 0.395797649828908603285, 0.425478988407300545365,
|
|---|
| 667 | 0.454709422167743008636, 0.483457973920596359768,
|
|---|
| 668 | 0.511694177154667673586, 0.539388108324357436227, // 18
|
|---|
| 669 |
|
|---|
| 670 | 0.566510418561397168404, 0.593032364777572080684,
|
|---|
| 671 | 0.618925840125468570386, 0.644163403784967106798,
|
|---|
| 672 | 0.668718310043916153953, 0.692564536642171561344, // 24
|
|---|
| 673 |
|
|---|
| 674 | 0.715676812348967626225, 0.738030643744400132851,
|
|---|
| 675 | 0.759602341176647498703, 0.780369043867433217604,
|
|---|
| 676 | 0.800308744139140817229, 0.819400310737931675539, // 30
|
|---|
| 677 |
|
|---|
| 678 | 0.837623511228187121494, 0.854959033434601455463,
|
|---|
| 679 | 0.871388505909296502874, 0.886894517402420416057,
|
|---|
| 680 | 0.901460635315852341319, 0.915071423120898074206, // 36
|
|---|
| 681 |
|
|---|
| 682 | 0.927712456722308690965, 0.939370339752755216932,
|
|---|
| 683 | 0.950032717784437635756, 0.959688291448742539300,
|
|---|
| 684 | 0.968326828463264212174, 0.975939174585136466453, // 42
|
|---|
| 685 |
|
|---|
| 686 | 0.982517263563014677447, 0.988054126329623799481,
|
|---|
| 687 | 0.992543900323762624572, 0.995981842987209290650,
|
|---|
| 688 | 0.998364375863181677724, 0.999689503883230766828 // 48
|
|---|
| 689 | } ;
|
|---|
| 690 |
|
|---|
| 691 | static G4double
|
|---|
| 692 | weight[] = {
|
|---|
| 693 | 0.032550614492363166242, 0.032516118713868835987,
|
|---|
| 694 | 0.032447163714064269364, 0.032343822568575928429,
|
|---|
| 695 | 0.032206204794030250669, 0.032034456231992663218, // 6
|
|---|
| 696 |
|
|---|
| 697 | 0.031828758894411006535, 0.031589330770727168558,
|
|---|
| 698 | 0.031316425596862355813, 0.031010332586313837423,
|
|---|
| 699 | 0.030671376123669149014, 0.030299915420827593794, // 12
|
|---|
| 700 |
|
|---|
| 701 | 0.029896344136328385984, 0.029461089958167905970,
|
|---|
| 702 | 0.028994614150555236543, 0.028497411065085385646,
|
|---|
| 703 | 0.027970007616848334440, 0.027412962726029242823, // 18
|
|---|
| 704 |
|
|---|
| 705 | 0.026826866725591762198, 0.026212340735672413913,
|
|---|
| 706 | 0.025570036005349361499, 0.024900633222483610288,
|
|---|
| 707 | 0.024204841792364691282, 0.023483399085926219842, // 24
|
|---|
| 708 |
|
|---|
| 709 | 0.022737069658329374001, 0.021966644438744349195,
|
|---|
| 710 | 0.021172939892191298988, 0.020356797154333324595,
|
|---|
| 711 | 0.019519081140145022410, 0.018660679627411467385, // 30
|
|---|
| 712 |
|
|---|
| 713 | 0.017782502316045260838, 0.016885479864245172450,
|
|---|
| 714 | 0.015970562902562291381, 0.015038721026994938006,
|
|---|
| 715 | 0.014090941772314860916, 0.013128229566961572637, // 36
|
|---|
| 716 |
|
|---|
| 717 | 0.012151604671088319635, 0.011162102099838498591,
|
|---|
| 718 | 0.010160770535008415758, 0.009148671230783386633,
|
|---|
| 719 | 0.008126876925698759217, 0.007096470791153865269, // 42
|
|---|
| 720 |
|
|---|
| 721 | 0.006058545504235961683, 0.005014202742927517693,
|
|---|
| 722 | 0.003964554338444686674, 0.002910731817934946408,
|
|---|
| 723 | 0.001853960788946921732, 0.000796792065552012429 // 48
|
|---|
| 724 | } ;
|
|---|
| 725 | xMean = 0.5*(a + b) ;
|
|---|
| 726 | xDiff = 0.5*(b - a) ;
|
|---|
| 727 | integral = 0.0 ;
|
|---|
| 728 | for(i=0;i<48;i++)
|
|---|
| 729 | {
|
|---|
| 730 | dx = xDiff*abscissa[i] ;
|
|---|
| 731 | integral += weight[i]*((*f)(xMean + dx) + (*f)(xMean - dx)) ;
|
|---|
| 732 | }
|
|---|
| 733 | return integral *= xDiff ;
|
|---|
| 734 | }
|
|---|
| 735 |
|
|---|
| 736 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 737 | //
|
|---|
| 738 | // Methods involving Chebyshev polynomials
|
|---|
| 739 | //
|
|---|
| 740 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 741 | //
|
|---|
| 742 | // Integrates function pointed by T::f from a to b by Gauss-Chebyshev
|
|---|
| 743 | // quadrature method.
|
|---|
| 744 | // Convenient for using with class object typeT
|
|---|
| 745 |
|
|---|
| 746 | template <class T, class F>
|
|---|
| 747 | G4double G4Integrator<T,F>::Chebyshev( T& typeT, F f, G4double a,
|
|---|
| 748 | G4double b, G4int nChebyshev )
|
|---|
| 749 | {
|
|---|
| 750 | G4int i ;
|
|---|
| 751 | G4double xDiff, xMean, dx, integral = 0.0 ;
|
|---|
| 752 |
|
|---|
| 753 | G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ??
|
|---|
| 754 | G4double cof = pi/fNumber ;
|
|---|
| 755 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 756 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 757 | for(i=0;i<fNumber;i++)
|
|---|
| 758 | {
|
|---|
| 759 | fAbscissa[i] = std::cos(cof*(i + 0.5)) ;
|
|---|
| 760 | fWeight[i] = cof*std::sqrt(1 - fAbscissa[i]*fAbscissa[i]) ;
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 | //
|
|---|
| 764 | // Now we ready to estimate the integral
|
|---|
| 765 | //
|
|---|
| 766 |
|
|---|
| 767 | xMean = 0.5*(a + b) ;
|
|---|
| 768 | xDiff = 0.5*(b - a) ;
|
|---|
| 769 | for(i=0;i<fNumber;i++)
|
|---|
| 770 | {
|
|---|
| 771 | dx = xDiff*fAbscissa[i] ;
|
|---|
| 772 | integral += fWeight[i]*(typeT.*f)(xMean + dx) ;
|
|---|
| 773 | }
|
|---|
| 774 | delete[] fAbscissa;
|
|---|
| 775 | delete[] fWeight;
|
|---|
| 776 | return integral *= xDiff ;
|
|---|
| 777 | }
|
|---|
| 778 |
|
|---|
| 779 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 780 | //
|
|---|
| 781 | // Convenient for using with 'this' pointer
|
|---|
| 782 |
|
|---|
| 783 | template <class T, class F>
|
|---|
| 784 | G4double G4Integrator<T,F>::Chebyshev( T* ptrT, F f, G4double a,
|
|---|
| 785 | G4double b, G4int n )
|
|---|
| 786 | {
|
|---|
| 787 | return Chebyshev(*ptrT,f,a,b,n) ;
|
|---|
| 788 | }
|
|---|
| 789 |
|
|---|
| 790 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 791 | //
|
|---|
| 792 | // For use with global scope functions f
|
|---|
| 793 |
|
|---|
| 794 | template <class T, class F>
|
|---|
| 795 | G4double G4Integrator<T,F>::Chebyshev( G4double (*f)(G4double),
|
|---|
| 796 | G4double a, G4double b, G4int nChebyshev )
|
|---|
| 797 | {
|
|---|
| 798 | G4int i ;
|
|---|
| 799 | G4double xDiff, xMean, dx, integral = 0.0 ;
|
|---|
| 800 |
|
|---|
| 801 | G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ??
|
|---|
| 802 | G4double cof = pi/fNumber ;
|
|---|
| 803 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 804 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 805 | for(i=0;i<fNumber;i++)
|
|---|
| 806 | {
|
|---|
| 807 | fAbscissa[i] = std::cos(cof*(i + 0.5)) ;
|
|---|
| 808 | fWeight[i] = cof*std::sqrt(1 - fAbscissa[i]*fAbscissa[i]) ;
|
|---|
| 809 | }
|
|---|
| 810 |
|
|---|
| 811 | //
|
|---|
| 812 | // Now we ready to estimate the integral
|
|---|
| 813 | //
|
|---|
| 814 |
|
|---|
| 815 | xMean = 0.5*(a + b) ;
|
|---|
| 816 | xDiff = 0.5*(b - a) ;
|
|---|
| 817 | for(i=0;i<fNumber;i++)
|
|---|
| 818 | {
|
|---|
| 819 | dx = xDiff*fAbscissa[i] ;
|
|---|
| 820 | integral += fWeight[i]*(*f)(xMean + dx) ;
|
|---|
| 821 | }
|
|---|
| 822 | delete[] fAbscissa;
|
|---|
| 823 | delete[] fWeight;
|
|---|
| 824 | return integral *= xDiff ;
|
|---|
| 825 | }
|
|---|
| 826 |
|
|---|
| 827 | //////////////////////////////////////////////////////////////////////
|
|---|
| 828 | //
|
|---|
| 829 | // Method involving Laguerre polynomials
|
|---|
| 830 | //
|
|---|
| 831 | //////////////////////////////////////////////////////////////////////
|
|---|
| 832 | //
|
|---|
| 833 | // Integral from zero to infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
|
|---|
| 834 | // The value of nLaguerre sets the accuracy.
|
|---|
| 835 | // The function creates arrays fAbscissa[0,..,nLaguerre-1] and
|
|---|
| 836 | // fWeight[0,..,nLaguerre-1] .
|
|---|
| 837 | // Convenient for using with class object 'typeT' and (typeT.*f) function
|
|---|
| 838 | // (T::f)
|
|---|
| 839 |
|
|---|
| 840 | template <class T, class F>
|
|---|
| 841 | G4double G4Integrator<T,F>::Laguerre( T& typeT, F f, G4double alpha,
|
|---|
| 842 | G4int nLaguerre )
|
|---|
| 843 | {
|
|---|
| 844 | const G4double tolerance = 1.0e-10 ;
|
|---|
| 845 | const G4int maxNumber = 12 ;
|
|---|
| 846 | G4int i, j, k ;
|
|---|
| 847 | G4double newton=0., newton1, temp1, temp2, temp3, temp, cofi ;
|
|---|
| 848 | G4double integral = 0.0 ;
|
|---|
| 849 |
|
|---|
| 850 | G4int fNumber = nLaguerre ;
|
|---|
| 851 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 852 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 853 |
|
|---|
| 854 | for(i=1;i<=fNumber;i++) // Loop over the desired roots
|
|---|
| 855 | {
|
|---|
| 856 | if(i == 1)
|
|---|
| 857 | {
|
|---|
| 858 | newton = (1.0 + alpha)*(3.0 + 0.92*alpha)
|
|---|
| 859 | / (1.0 + 2.4*fNumber + 1.8*alpha) ;
|
|---|
| 860 | }
|
|---|
| 861 | else if(i == 2)
|
|---|
| 862 | {
|
|---|
| 863 | newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ;
|
|---|
| 864 | }
|
|---|
| 865 | else
|
|---|
| 866 | {
|
|---|
| 867 | cofi = i - 2 ;
|
|---|
| 868 | newton += ((1.0+2.55*cofi)/(1.9*cofi)
|
|---|
| 869 | + 1.26*cofi*alpha/(1.0+3.5*cofi))
|
|---|
| 870 | * (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ;
|
|---|
| 871 | }
|
|---|
| 872 | for(k=1;k<=maxNumber;k++)
|
|---|
| 873 | {
|
|---|
| 874 | temp1 = 1.0 ;
|
|---|
| 875 | temp2 = 0.0 ;
|
|---|
| 876 |
|
|---|
| 877 | for(j=1;j<=fNumber;j++)
|
|---|
| 878 | {
|
|---|
| 879 | temp3 = temp2 ;
|
|---|
| 880 | temp2 = temp1 ;
|
|---|
| 881 | temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ;
|
|---|
| 882 | }
|
|---|
| 883 | temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ;
|
|---|
| 884 | newton1 = newton ;
|
|---|
| 885 | newton = newton1 - temp1/temp ;
|
|---|
| 886 |
|
|---|
| 887 | if(std::fabs(newton - newton1) <= tolerance)
|
|---|
| 888 | {
|
|---|
| 889 | break ;
|
|---|
| 890 | }
|
|---|
| 891 | }
|
|---|
| 892 | if(k > maxNumber)
|
|---|
| 893 | {
|
|---|
| 894 | G4Exception("G4Integrator<T,F>::Laguerre(T,F, ...)", "Error",
|
|---|
| 895 | FatalException, "Too many (>12) iterations.");
|
|---|
| 896 | }
|
|---|
| 897 |
|
|---|
| 898 | fAbscissa[i-1] = newton ;
|
|---|
| 899 | fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber) -
|
|---|
| 900 | GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ;
|
|---|
| 901 | }
|
|---|
| 902 |
|
|---|
| 903 | //
|
|---|
| 904 | // Integral evaluation
|
|---|
| 905 | //
|
|---|
| 906 |
|
|---|
| 907 | for(i=0;i<fNumber;i++)
|
|---|
| 908 | {
|
|---|
| 909 | integral += fWeight[i]*(typeT.*f)(fAbscissa[i]) ;
|
|---|
| 910 | }
|
|---|
| 911 | delete[] fAbscissa;
|
|---|
| 912 | delete[] fWeight;
|
|---|
| 913 | return integral ;
|
|---|
| 914 | }
|
|---|
| 915 |
|
|---|
| 916 |
|
|---|
| 917 |
|
|---|
| 918 | //////////////////////////////////////////////////////////////////////
|
|---|
| 919 | //
|
|---|
| 920 | //
|
|---|
| 921 |
|
|---|
| 922 | template <class T, class F> G4double
|
|---|
| 923 | G4Integrator<T,F>::Laguerre( T* ptrT, F f, G4double alpha, G4int nLaguerre )
|
|---|
| 924 | {
|
|---|
| 925 | return Laguerre(*ptrT,f,alpha,nLaguerre) ;
|
|---|
| 926 | }
|
|---|
| 927 |
|
|---|
| 928 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 929 | //
|
|---|
| 930 | // For use with global scope functions f
|
|---|
| 931 |
|
|---|
| 932 | template <class T, class F> G4double
|
|---|
| 933 | G4Integrator<T,F>::Laguerre( G4double (*f)(G4double),
|
|---|
| 934 | G4double alpha, G4int nLaguerre )
|
|---|
| 935 | {
|
|---|
| 936 | const G4double tolerance = 1.0e-10 ;
|
|---|
| 937 | const G4int maxNumber = 12 ;
|
|---|
| 938 | G4int i, j, k ;
|
|---|
| 939 | G4double newton=0., newton1, temp1, temp2, temp3, temp, cofi ;
|
|---|
| 940 | G4double integral = 0.0 ;
|
|---|
| 941 |
|
|---|
| 942 | G4int fNumber = nLaguerre ;
|
|---|
| 943 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 944 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 945 |
|
|---|
| 946 | for(i=1;i<=fNumber;i++) // Loop over the desired roots
|
|---|
| 947 | {
|
|---|
| 948 | if(i == 1)
|
|---|
| 949 | {
|
|---|
| 950 | newton = (1.0 + alpha)*(3.0 + 0.92*alpha)
|
|---|
| 951 | / (1.0 + 2.4*fNumber + 1.8*alpha) ;
|
|---|
| 952 | }
|
|---|
| 953 | else if(i == 2)
|
|---|
| 954 | {
|
|---|
| 955 | newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ;
|
|---|
| 956 | }
|
|---|
| 957 | else
|
|---|
| 958 | {
|
|---|
| 959 | cofi = i - 2 ;
|
|---|
| 960 | newton += ((1.0+2.55*cofi)/(1.9*cofi)
|
|---|
| 961 | + 1.26*cofi*alpha/(1.0+3.5*cofi))
|
|---|
| 962 | * (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ;
|
|---|
| 963 | }
|
|---|
| 964 | for(k=1;k<=maxNumber;k++)
|
|---|
| 965 | {
|
|---|
| 966 | temp1 = 1.0 ;
|
|---|
| 967 | temp2 = 0.0 ;
|
|---|
| 968 |
|
|---|
| 969 | for(j=1;j<=fNumber;j++)
|
|---|
| 970 | {
|
|---|
| 971 | temp3 = temp2 ;
|
|---|
| 972 | temp2 = temp1 ;
|
|---|
| 973 | temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ;
|
|---|
| 974 | }
|
|---|
| 975 | temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ;
|
|---|
| 976 | newton1 = newton ;
|
|---|
| 977 | newton = newton1 - temp1/temp ;
|
|---|
| 978 |
|
|---|
| 979 | if(std::fabs(newton - newton1) <= tolerance)
|
|---|
| 980 | {
|
|---|
| 981 | break ;
|
|---|
| 982 | }
|
|---|
| 983 | }
|
|---|
| 984 | if(k > maxNumber)
|
|---|
| 985 | {
|
|---|
| 986 | G4Exception("G4Integrator<T,F>::Laguerre( ...)", "Error",
|
|---|
| 987 | FatalException, "Too many (>12) iterations.");
|
|---|
| 988 | }
|
|---|
| 989 |
|
|---|
| 990 | fAbscissa[i-1] = newton ;
|
|---|
| 991 | fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber) -
|
|---|
| 992 | GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ;
|
|---|
| 993 | }
|
|---|
| 994 |
|
|---|
| 995 | //
|
|---|
| 996 | // Integral evaluation
|
|---|
| 997 | //
|
|---|
| 998 |
|
|---|
| 999 | for(i=0;i<fNumber;i++)
|
|---|
| 1000 | {
|
|---|
| 1001 | integral += fWeight[i]*(*f)(fAbscissa[i]) ;
|
|---|
| 1002 | }
|
|---|
| 1003 | delete[] fAbscissa;
|
|---|
| 1004 | delete[] fWeight;
|
|---|
| 1005 | return integral ;
|
|---|
| 1006 | }
|
|---|
| 1007 |
|
|---|
| 1008 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 1009 | //
|
|---|
| 1010 | // Auxiliary function which returns the value of std::log(gamma-function(x))
|
|---|
| 1011 | // Returns the value ln(Gamma(xx) for xx > 0. Full accuracy is obtained for
|
|---|
| 1012 | // xx > 1. For 0 < xx < 1. the reflection formula (6.1.4) can be used first.
|
|---|
| 1013 | // (Adapted from Numerical Recipes in C)
|
|---|
| 1014 | //
|
|---|
| 1015 |
|
|---|
| 1016 | template <class T, class F>
|
|---|
| 1017 | G4double G4Integrator<T,F>::GammaLogarithm(G4double xx)
|
|---|
| 1018 | {
|
|---|
| 1019 | static G4double cof[6] = { 76.18009172947146, -86.50532032941677,
|
|---|
| 1020 | 24.01409824083091, -1.231739572450155,
|
|---|
| 1021 | 0.1208650973866179e-2, -0.5395239384953e-5 } ;
|
|---|
| 1022 | register G4int j;
|
|---|
| 1023 | G4double x = xx - 1.0 ;
|
|---|
| 1024 | G4double tmp = x + 5.5 ;
|
|---|
| 1025 | tmp -= (x + 0.5) * std::log(tmp) ;
|
|---|
| 1026 | G4double ser = 1.000000000190015 ;
|
|---|
| 1027 |
|
|---|
| 1028 | for ( j = 0; j <= 5; j++ )
|
|---|
| 1029 | {
|
|---|
| 1030 | x += 1.0 ;
|
|---|
| 1031 | ser += cof[j]/x ;
|
|---|
| 1032 | }
|
|---|
| 1033 | return -tmp + std::log(2.5066282746310005*ser) ;
|
|---|
| 1034 | }
|
|---|
| 1035 |
|
|---|
| 1036 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 1037 | //
|
|---|
| 1038 | // Method involving Hermite polynomials
|
|---|
| 1039 | //
|
|---|
| 1040 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 1041 | //
|
|---|
| 1042 | //
|
|---|
| 1043 | // Gauss-Hermite method for integration of std::exp(-x*x)*f(x)
|
|---|
| 1044 | // from minus infinity to plus infinity .
|
|---|
| 1045 | //
|
|---|
| 1046 |
|
|---|
| 1047 | template <class T, class F>
|
|---|
| 1048 | G4double G4Integrator<T,F>::Hermite( T& typeT, F f, G4int nHermite )
|
|---|
| 1049 | {
|
|---|
| 1050 | const G4double tolerance = 1.0e-12 ;
|
|---|
| 1051 | const G4int maxNumber = 12 ;
|
|---|
| 1052 |
|
|---|
| 1053 | G4int i, j, k ;
|
|---|
| 1054 | G4double integral = 0.0 ;
|
|---|
| 1055 | G4double newton=0., newton1, temp1, temp2, temp3, temp ;
|
|---|
| 1056 |
|
|---|
| 1057 | G4double piInMinusQ = std::pow(pi,-0.25) ; // 1.0/std::sqrt(std::sqrt(pi)) ??
|
|---|
| 1058 |
|
|---|
| 1059 | G4int fNumber = (nHermite +1)/2 ;
|
|---|
| 1060 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 1061 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 1062 |
|
|---|
| 1063 | for(i=1;i<=fNumber;i++)
|
|---|
| 1064 | {
|
|---|
| 1065 | if(i == 1)
|
|---|
| 1066 | {
|
|---|
| 1067 | newton = std::sqrt((G4double)(2*nHermite + 1)) -
|
|---|
| 1068 | 1.85575001*std::pow((G4double)(2*nHermite + 1),-0.16666999) ;
|
|---|
| 1069 | }
|
|---|
| 1070 | else if(i == 2)
|
|---|
| 1071 | {
|
|---|
| 1072 | newton -= 1.14001*std::pow((G4double)nHermite,0.425999)/newton ;
|
|---|
| 1073 | }
|
|---|
| 1074 | else if(i == 3)
|
|---|
| 1075 | {
|
|---|
| 1076 | newton = 1.86002*newton - 0.86002*fAbscissa[0] ;
|
|---|
| 1077 | }
|
|---|
| 1078 | else if(i == 4)
|
|---|
| 1079 | {
|
|---|
| 1080 | newton = 1.91001*newton - 0.91001*fAbscissa[1] ;
|
|---|
| 1081 | }
|
|---|
| 1082 | else
|
|---|
| 1083 | {
|
|---|
| 1084 | newton = 2.0*newton - fAbscissa[i - 3] ;
|
|---|
| 1085 | }
|
|---|
| 1086 | for(k=1;k<=maxNumber;k++)
|
|---|
| 1087 | {
|
|---|
| 1088 | temp1 = piInMinusQ ;
|
|---|
| 1089 | temp2 = 0.0 ;
|
|---|
| 1090 |
|
|---|
| 1091 | for(j=1;j<=nHermite;j++)
|
|---|
| 1092 | {
|
|---|
| 1093 | temp3 = temp2 ;
|
|---|
| 1094 | temp2 = temp1 ;
|
|---|
| 1095 | temp1 = newton*std::sqrt(2.0/j)*temp2 -
|
|---|
| 1096 | std::sqrt(((G4double)(j - 1))/j)*temp3 ;
|
|---|
| 1097 | }
|
|---|
| 1098 | temp = std::sqrt((G4double)2*nHermite)*temp2 ;
|
|---|
| 1099 | newton1 = newton ;
|
|---|
| 1100 | newton = newton1 - temp1/temp ;
|
|---|
| 1101 |
|
|---|
| 1102 | if(std::fabs(newton - newton1) <= tolerance)
|
|---|
| 1103 | {
|
|---|
| 1104 | break ;
|
|---|
| 1105 | }
|
|---|
| 1106 | }
|
|---|
| 1107 | if(k > maxNumber)
|
|---|
| 1108 | {
|
|---|
| 1109 | G4Exception("G4Integrator<T,F>::Hermite(T,F, ...)", "Error",
|
|---|
| 1110 | FatalException, "Too many (>12) iterations.");
|
|---|
| 1111 | }
|
|---|
| 1112 | fAbscissa[i-1] = newton ;
|
|---|
| 1113 | fWeight[i-1] = 2.0/(temp*temp) ;
|
|---|
| 1114 | }
|
|---|
| 1115 |
|
|---|
| 1116 | //
|
|---|
| 1117 | // Integral calculation
|
|---|
| 1118 | //
|
|---|
| 1119 |
|
|---|
| 1120 | for(i=0;i<fNumber;i++)
|
|---|
| 1121 | {
|
|---|
| 1122 | integral += fWeight[i]*( (typeT.*f)(fAbscissa[i]) +
|
|---|
| 1123 | (typeT.*f)(-fAbscissa[i]) ) ;
|
|---|
| 1124 | }
|
|---|
| 1125 | delete[] fAbscissa;
|
|---|
| 1126 | delete[] fWeight;
|
|---|
| 1127 | return integral ;
|
|---|
| 1128 | }
|
|---|
| 1129 |
|
|---|
| 1130 |
|
|---|
| 1131 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 1132 | //
|
|---|
| 1133 | // For use with 'this' pointer
|
|---|
| 1134 |
|
|---|
| 1135 | template <class T, class F>
|
|---|
| 1136 | G4double G4Integrator<T,F>::Hermite( T* ptrT, F f, G4int n )
|
|---|
| 1137 | {
|
|---|
| 1138 | return Hermite(*ptrT,f,n) ;
|
|---|
| 1139 | }
|
|---|
| 1140 |
|
|---|
| 1141 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 1142 | //
|
|---|
| 1143 | // For use with global scope f
|
|---|
| 1144 |
|
|---|
| 1145 | template <class T, class F>
|
|---|
| 1146 | G4double G4Integrator<T,F>::Hermite( G4double (*f)(G4double), G4int nHermite)
|
|---|
| 1147 | {
|
|---|
| 1148 | const G4double tolerance = 1.0e-12 ;
|
|---|
| 1149 | const G4int maxNumber = 12 ;
|
|---|
| 1150 |
|
|---|
| 1151 | G4int i, j, k ;
|
|---|
| 1152 | G4double integral = 0.0 ;
|
|---|
| 1153 | G4double newton=0., newton1, temp1, temp2, temp3, temp ;
|
|---|
| 1154 |
|
|---|
| 1155 | G4double piInMinusQ = std::pow(pi,-0.25) ; // 1.0/std::sqrt(std::sqrt(pi)) ??
|
|---|
| 1156 |
|
|---|
| 1157 | G4int fNumber = (nHermite +1)/2 ;
|
|---|
| 1158 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 1159 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 1160 |
|
|---|
| 1161 | for(i=1;i<=fNumber;i++)
|
|---|
| 1162 | {
|
|---|
| 1163 | if(i == 1)
|
|---|
| 1164 | {
|
|---|
| 1165 | newton = std::sqrt((G4double)(2*nHermite + 1)) -
|
|---|
| 1166 | 1.85575001*std::pow((G4double)(2*nHermite + 1),-0.16666999) ;
|
|---|
| 1167 | }
|
|---|
| 1168 | else if(i == 2)
|
|---|
| 1169 | {
|
|---|
| 1170 | newton -= 1.14001*std::pow((G4double)nHermite,0.425999)/newton ;
|
|---|
| 1171 | }
|
|---|
| 1172 | else if(i == 3)
|
|---|
| 1173 | {
|
|---|
| 1174 | newton = 1.86002*newton - 0.86002*fAbscissa[0] ;
|
|---|
| 1175 | }
|
|---|
| 1176 | else if(i == 4)
|
|---|
| 1177 | {
|
|---|
| 1178 | newton = 1.91001*newton - 0.91001*fAbscissa[1] ;
|
|---|
| 1179 | }
|
|---|
| 1180 | else
|
|---|
| 1181 | {
|
|---|
| 1182 | newton = 2.0*newton - fAbscissa[i - 3] ;
|
|---|
| 1183 | }
|
|---|
| 1184 | for(k=1;k<=maxNumber;k++)
|
|---|
| 1185 | {
|
|---|
| 1186 | temp1 = piInMinusQ ;
|
|---|
| 1187 | temp2 = 0.0 ;
|
|---|
| 1188 |
|
|---|
| 1189 | for(j=1;j<=nHermite;j++)
|
|---|
| 1190 | {
|
|---|
| 1191 | temp3 = temp2 ;
|
|---|
| 1192 | temp2 = temp1 ;
|
|---|
| 1193 | temp1 = newton*std::sqrt(2.0/j)*temp2 -
|
|---|
| 1194 | std::sqrt(((G4double)(j - 1))/j)*temp3 ;
|
|---|
| 1195 | }
|
|---|
| 1196 | temp = std::sqrt((G4double)2*nHermite)*temp2 ;
|
|---|
| 1197 | newton1 = newton ;
|
|---|
| 1198 | newton = newton1 - temp1/temp ;
|
|---|
| 1199 |
|
|---|
| 1200 | if(std::fabs(newton - newton1) <= tolerance)
|
|---|
| 1201 | {
|
|---|
| 1202 | break ;
|
|---|
| 1203 | }
|
|---|
| 1204 | }
|
|---|
| 1205 | if(k > maxNumber)
|
|---|
| 1206 | {
|
|---|
| 1207 | G4Exception("G4Integrator<T,F>::Hermite(...)", "Error",
|
|---|
| 1208 | FatalException, "Too many (>12) iterations.");
|
|---|
| 1209 | }
|
|---|
| 1210 | fAbscissa[i-1] = newton ;
|
|---|
| 1211 | fWeight[i-1] = 2.0/(temp*temp) ;
|
|---|
| 1212 | }
|
|---|
| 1213 |
|
|---|
| 1214 | //
|
|---|
| 1215 | // Integral calculation
|
|---|
| 1216 | //
|
|---|
| 1217 |
|
|---|
| 1218 | for(i=0;i<fNumber;i++)
|
|---|
| 1219 | {
|
|---|
| 1220 | integral += fWeight[i]*( (*f)(fAbscissa[i]) + (*f)(-fAbscissa[i]) ) ;
|
|---|
| 1221 | }
|
|---|
| 1222 | delete[] fAbscissa;
|
|---|
| 1223 | delete[] fWeight;
|
|---|
| 1224 | return integral ;
|
|---|
| 1225 | }
|
|---|
| 1226 |
|
|---|
| 1227 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 1228 | //
|
|---|
| 1229 | // Method involving Jacobi polynomials
|
|---|
| 1230 | //
|
|---|
| 1231 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 1232 | //
|
|---|
| 1233 | // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*f(x)
|
|---|
| 1234 | // from minus unit to plus unit .
|
|---|
| 1235 | //
|
|---|
| 1236 |
|
|---|
| 1237 | template <class T, class F>
|
|---|
| 1238 | G4double G4Integrator<T,F>::Jacobi( T& typeT, F f, G4double alpha,
|
|---|
| 1239 | G4double beta, G4int nJacobi)
|
|---|
| 1240 | {
|
|---|
| 1241 | const G4double tolerance = 1.0e-12 ;
|
|---|
| 1242 | const G4double maxNumber = 12 ;
|
|---|
| 1243 | G4int i, k, j ;
|
|---|
| 1244 | G4double alphaBeta, alphaReduced, betaReduced, root1=0., root2=0., root3=0. ;
|
|---|
| 1245 | G4double a, b, c, newton1, newton2, newton3, newton, temp, root=0., rootTemp ;
|
|---|
| 1246 |
|
|---|
| 1247 | G4int fNumber = nJacobi ;
|
|---|
| 1248 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 1249 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 1250 |
|
|---|
| 1251 | for (i=1;i<=nJacobi;i++)
|
|---|
| 1252 | {
|
|---|
| 1253 | if (i == 1)
|
|---|
| 1254 | {
|
|---|
| 1255 | alphaReduced = alpha/nJacobi ;
|
|---|
| 1256 | betaReduced = beta/nJacobi ;
|
|---|
| 1257 | root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
|
|---|
| 1258 | 0.767999*alphaReduced/nJacobi) ;
|
|---|
| 1259 | root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced +
|
|---|
| 1260 | 0.451998*alphaReduced*alphaReduced +
|
|---|
| 1261 | 0.83001*alphaReduced*betaReduced ;
|
|---|
| 1262 | root = 1.0-root1/root2 ;
|
|---|
| 1263 | }
|
|---|
| 1264 | else if (i == 2)
|
|---|
| 1265 | {
|
|---|
| 1266 | root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ;
|
|---|
| 1267 | root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
|
|---|
| 1268 | root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
|
|---|
| 1269 | root -= (1.0-root)*root1*root2*root3 ;
|
|---|
| 1270 | }
|
|---|
| 1271 | else if (i == 3)
|
|---|
| 1272 | {
|
|---|
| 1273 | root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ;
|
|---|
| 1274 | root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
|
|---|
| 1275 | root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
|
|---|
| 1276 | root -= (fAbscissa[0]-root)*root1*root2*root3 ;
|
|---|
| 1277 | }
|
|---|
| 1278 | else if (i == nJacobi-1)
|
|---|
| 1279 | {
|
|---|
| 1280 | root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
|
|---|
| 1281 | root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
|
|---|
| 1282 | root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ;
|
|---|
| 1283 | root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ;
|
|---|
| 1284 | }
|
|---|
| 1285 | else if (i == nJacobi)
|
|---|
| 1286 | {
|
|---|
| 1287 | root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
|
|---|
| 1288 | root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
|
|---|
| 1289 | root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ;
|
|---|
| 1290 | root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ;
|
|---|
| 1291 | }
|
|---|
| 1292 | else
|
|---|
| 1293 | {
|
|---|
| 1294 | root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ;
|
|---|
| 1295 | }
|
|---|
| 1296 | alphaBeta = alpha + beta ;
|
|---|
| 1297 | for (k=1;k<=maxNumber;k++)
|
|---|
| 1298 | {
|
|---|
| 1299 | temp = 2.0 + alphaBeta ;
|
|---|
| 1300 | newton1 = (alpha-beta+temp*root)/2.0 ;
|
|---|
| 1301 | newton2 = 1.0 ;
|
|---|
| 1302 | for (j=2;j<=nJacobi;j++)
|
|---|
| 1303 | {
|
|---|
| 1304 | newton3 = newton2 ;
|
|---|
| 1305 | newton2 = newton1 ;
|
|---|
| 1306 | temp = 2*j+alphaBeta ;
|
|---|
| 1307 | a = 2*j*(j+alphaBeta)*(temp-2.0) ;
|
|---|
| 1308 | b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
|
|---|
| 1309 | c = 2.0*(j-1+alpha)*(j-1+beta)*temp ;
|
|---|
| 1310 | newton1 = (b*newton2-c*newton3)/a ;
|
|---|
| 1311 | }
|
|---|
| 1312 | newton = (nJacobi*(alpha - beta - temp*root)*newton1 +
|
|---|
| 1313 | 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
|
|---|
| 1314 | (temp*(1.0 - root*root)) ;
|
|---|
| 1315 | rootTemp = root ;
|
|---|
| 1316 | root = rootTemp - newton1/newton ;
|
|---|
| 1317 | if (std::fabs(root-rootTemp) <= tolerance)
|
|---|
| 1318 | {
|
|---|
| 1319 | break ;
|
|---|
| 1320 | }
|
|---|
| 1321 | }
|
|---|
| 1322 | if (k > maxNumber)
|
|---|
| 1323 | {
|
|---|
| 1324 | G4Exception("G4Integrator<T,F>::Jacobi(T,F, ...)", "Error",
|
|---|
| 1325 | FatalException, "Too many (>12) iterations.");
|
|---|
| 1326 | }
|
|---|
| 1327 | fAbscissa[i-1] = root ;
|
|---|
| 1328 | fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) +
|
|---|
| 1329 | GammaLogarithm((G4double)(beta+nJacobi)) -
|
|---|
| 1330 | GammaLogarithm((G4double)(nJacobi+1.0)) -
|
|---|
| 1331 | GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0)))
|
|---|
| 1332 | *temp*std::pow(2.0,alphaBeta)/(newton*newton2) ;
|
|---|
| 1333 | }
|
|---|
| 1334 |
|
|---|
| 1335 | //
|
|---|
| 1336 | // Calculation of the integral
|
|---|
| 1337 | //
|
|---|
| 1338 |
|
|---|
| 1339 | G4double integral = 0.0 ;
|
|---|
| 1340 | for(i=0;i<fNumber;i++)
|
|---|
| 1341 | {
|
|---|
| 1342 | integral += fWeight[i]*(typeT.*f)(fAbscissa[i]) ;
|
|---|
| 1343 | }
|
|---|
| 1344 | delete[] fAbscissa;
|
|---|
| 1345 | delete[] fWeight;
|
|---|
| 1346 | return integral ;
|
|---|
| 1347 | }
|
|---|
| 1348 |
|
|---|
| 1349 |
|
|---|
| 1350 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 1351 | //
|
|---|
| 1352 | // For use with 'this' pointer
|
|---|
| 1353 |
|
|---|
| 1354 | template <class T, class F>
|
|---|
| 1355 | G4double G4Integrator<T,F>::Jacobi( T* ptrT, F f, G4double alpha,
|
|---|
| 1356 | G4double beta, G4int n)
|
|---|
| 1357 | {
|
|---|
| 1358 | return Jacobi(*ptrT,f,alpha,beta,n) ;
|
|---|
| 1359 | }
|
|---|
| 1360 |
|
|---|
| 1361 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 1362 | //
|
|---|
| 1363 | // For use with global scope f
|
|---|
| 1364 |
|
|---|
| 1365 | template <class T, class F>
|
|---|
| 1366 | G4double G4Integrator<T,F>::Jacobi( G4double (*f)(G4double), G4double alpha,
|
|---|
| 1367 | G4double beta, G4int nJacobi)
|
|---|
| 1368 | {
|
|---|
| 1369 | const G4double tolerance = 1.0e-12 ;
|
|---|
| 1370 | const G4double maxNumber = 12 ;
|
|---|
| 1371 | G4int i, k, j ;
|
|---|
| 1372 | G4double alphaBeta, alphaReduced, betaReduced, root1=0., root2=0., root3=0. ;
|
|---|
| 1373 | G4double a, b, c, newton1, newton2, newton3, newton, temp, root=0., rootTemp ;
|
|---|
| 1374 |
|
|---|
| 1375 | G4int fNumber = nJacobi ;
|
|---|
| 1376 | G4double* fAbscissa = new G4double[fNumber] ;
|
|---|
| 1377 | G4double* fWeight = new G4double[fNumber] ;
|
|---|
| 1378 |
|
|---|
| 1379 | for (i=1;i<=nJacobi;i++)
|
|---|
| 1380 | {
|
|---|
| 1381 | if (i == 1)
|
|---|
| 1382 | {
|
|---|
| 1383 | alphaReduced = alpha/nJacobi ;
|
|---|
| 1384 | betaReduced = beta/nJacobi ;
|
|---|
| 1385 | root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
|
|---|
| 1386 | 0.767999*alphaReduced/nJacobi) ;
|
|---|
| 1387 | root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced +
|
|---|
| 1388 | 0.451998*alphaReduced*alphaReduced +
|
|---|
| 1389 | 0.83001*alphaReduced*betaReduced ;
|
|---|
| 1390 | root = 1.0-root1/root2 ;
|
|---|
| 1391 | }
|
|---|
| 1392 | else if (i == 2)
|
|---|
| 1393 | {
|
|---|
| 1394 | root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ;
|
|---|
| 1395 | root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
|
|---|
| 1396 | root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
|
|---|
| 1397 | root -= (1.0-root)*root1*root2*root3 ;
|
|---|
| 1398 | }
|
|---|
| 1399 | else if (i == 3)
|
|---|
| 1400 | {
|
|---|
| 1401 | root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ;
|
|---|
| 1402 | root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
|
|---|
| 1403 | root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
|
|---|
| 1404 | root -= (fAbscissa[0]-root)*root1*root2*root3 ;
|
|---|
| 1405 | }
|
|---|
| 1406 | else if (i == nJacobi-1)
|
|---|
| 1407 | {
|
|---|
| 1408 | root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
|
|---|
| 1409 | root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
|
|---|
| 1410 | root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ;
|
|---|
| 1411 | root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ;
|
|---|
| 1412 | }
|
|---|
| 1413 | else if (i == nJacobi)
|
|---|
| 1414 | {
|
|---|
| 1415 | root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
|
|---|
| 1416 | root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
|
|---|
| 1417 | root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ;
|
|---|
| 1418 | root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ;
|
|---|
| 1419 | }
|
|---|
| 1420 | else
|
|---|
| 1421 | {
|
|---|
| 1422 | root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ;
|
|---|
| 1423 | }
|
|---|
| 1424 | alphaBeta = alpha + beta ;
|
|---|
| 1425 | for (k=1;k<=maxNumber;k++)
|
|---|
| 1426 | {
|
|---|
| 1427 | temp = 2.0 + alphaBeta ;
|
|---|
| 1428 | newton1 = (alpha-beta+temp*root)/2.0 ;
|
|---|
| 1429 | newton2 = 1.0 ;
|
|---|
| 1430 | for (j=2;j<=nJacobi;j++)
|
|---|
| 1431 | {
|
|---|
| 1432 | newton3 = newton2 ;
|
|---|
| 1433 | newton2 = newton1 ;
|
|---|
| 1434 | temp = 2*j+alphaBeta ;
|
|---|
| 1435 | a = 2*j*(j+alphaBeta)*(temp-2.0) ;
|
|---|
| 1436 | b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
|
|---|
| 1437 | c = 2.0*(j-1+alpha)*(j-1+beta)*temp ;
|
|---|
| 1438 | newton1 = (b*newton2-c*newton3)/a ;
|
|---|
| 1439 | }
|
|---|
| 1440 | newton = (nJacobi*(alpha - beta - temp*root)*newton1 +
|
|---|
| 1441 | 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2) /
|
|---|
| 1442 | (temp*(1.0 - root*root)) ;
|
|---|
| 1443 | rootTemp = root ;
|
|---|
| 1444 | root = rootTemp - newton1/newton ;
|
|---|
| 1445 | if (std::fabs(root-rootTemp) <= tolerance)
|
|---|
| 1446 | {
|
|---|
| 1447 | break ;
|
|---|
| 1448 | }
|
|---|
| 1449 | }
|
|---|
| 1450 | if (k > maxNumber)
|
|---|
| 1451 | {
|
|---|
| 1452 | G4Exception("G4Integrator<T,F>::Jacobi(...)", "Error",
|
|---|
| 1453 | FatalException, "Too many (>12) iterations.");
|
|---|
| 1454 | }
|
|---|
| 1455 | fAbscissa[i-1] = root ;
|
|---|
| 1456 | fWeight[i-1] =
|
|---|
| 1457 | std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) +
|
|---|
| 1458 | GammaLogarithm((G4double)(beta+nJacobi)) -
|
|---|
| 1459 | GammaLogarithm((G4double)(nJacobi+1.0)) -
|
|---|
| 1460 | GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0)))
|
|---|
| 1461 | *temp*std::pow(2.0,alphaBeta)/(newton*newton2);
|
|---|
| 1462 | }
|
|---|
| 1463 |
|
|---|
| 1464 | //
|
|---|
| 1465 | // Calculation of the integral
|
|---|
| 1466 | //
|
|---|
| 1467 |
|
|---|
| 1468 | G4double integral = 0.0 ;
|
|---|
| 1469 | for(i=0;i<fNumber;i++)
|
|---|
| 1470 | {
|
|---|
| 1471 | integral += fWeight[i]*(*f)(fAbscissa[i]) ;
|
|---|
| 1472 | }
|
|---|
| 1473 | delete[] fAbscissa;
|
|---|
| 1474 | delete[] fWeight;
|
|---|
| 1475 | return integral ;
|
|---|
| 1476 | }
|
|---|
| 1477 |
|
|---|
| 1478 | //
|
|---|
| 1479 | //
|
|---|
| 1480 | ///////////////////////////////////////////////////////////////////
|
|---|