| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4JTPolynomialSolver.hh,v 1.6 2006/06/29 18:59:49 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: HEAD $
|
|---|
| 29 | //
|
|---|
| 30 | // Class description:
|
|---|
| 31 | //
|
|---|
| 32 | // G4JTPolynomialSolver implements the Jenkins-Traub algorithm
|
|---|
| 33 | // for real polynomial root finding.
|
|---|
| 34 | // The solver returns -1, if the leading coefficient is zero,
|
|---|
| 35 | // the number of roots found, otherwise.
|
|---|
| 36 | //
|
|---|
| 37 | // ----------------------------- INPUT --------------------------------
|
|---|
| 38 | //
|
|---|
| 39 | // op - double precision vector of coefficients in order of
|
|---|
| 40 | // decreasing powers
|
|---|
| 41 | // degree - integer degree of polynomial
|
|---|
| 42 | //
|
|---|
| 43 | // ----------------------------- OUTPUT -------------------------------
|
|---|
| 44 | //
|
|---|
| 45 | // zeror,zeroi - double precision vectors of the
|
|---|
| 46 | // real and imaginary parts of the zeros
|
|---|
| 47 | //
|
|---|
| 48 | // ---------------------------- EXAMPLE -------------------------------
|
|---|
| 49 | //
|
|---|
| 50 | // G4JTPolynomialSolver trapEq ;
|
|---|
| 51 | // G4double coef[8] ;
|
|---|
| 52 | // G4double zr[7] , zi[7] ;
|
|---|
| 53 | // G4int num = trapEq.FindRoots(coef,7,zr,zi);
|
|---|
| 54 |
|
|---|
| 55 | // ---------------------------- HISTORY -------------------------------
|
|---|
| 56 | //
|
|---|
| 57 | // Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
|
|---|
| 58 | // Translated to C++ and adapted to use STL vectors,
|
|---|
| 59 | // by Oliver Link (Oliver.Link@cern.ch)
|
|---|
| 60 | //
|
|---|
| 61 | // --------------------------------------------------------------------
|
|---|
| 62 |
|
|---|
| 63 | #ifndef G4JTPOLYNOMIALSOLVER_HH
|
|---|
| 64 | #define G4JTPOLYNOMIALSOLVER_HH
|
|---|
| 65 |
|
|---|
| 66 | #include <cmath>
|
|---|
| 67 | #include <vector>
|
|---|
| 68 |
|
|---|
| 69 | #include "globals.hh"
|
|---|
| 70 |
|
|---|
| 71 | class G4JTPolynomialSolver
|
|---|
| 72 | {
|
|---|
| 73 |
|
|---|
| 74 | public:
|
|---|
| 75 |
|
|---|
| 76 | G4JTPolynomialSolver();
|
|---|
| 77 | ~G4JTPolynomialSolver();
|
|---|
| 78 |
|
|---|
| 79 | G4int FindRoots(G4double *op, G4int degree,
|
|---|
| 80 | G4double *zeror, G4double *zeroi);
|
|---|
| 81 |
|
|---|
| 82 | private:
|
|---|
| 83 |
|
|---|
| 84 | std::vector<G4double> p;
|
|---|
| 85 | std::vector<G4double> qp;
|
|---|
| 86 | std::vector<G4double> k;
|
|---|
| 87 | std::vector<G4double> qk;
|
|---|
| 88 | std::vector<G4double> svk;
|
|---|
| 89 |
|
|---|
| 90 | G4double sr;
|
|---|
| 91 | G4double si;
|
|---|
| 92 | G4double u,v;
|
|---|
| 93 | G4double a,b,c,d;
|
|---|
| 94 | G4double a1,a2,a3,a6,a7;
|
|---|
| 95 | G4double e,f,g,h;
|
|---|
| 96 | G4double szr,szi;
|
|---|
| 97 | G4double lzr,lzi;
|
|---|
| 98 | G4int n,nmi;
|
|---|
| 99 |
|
|---|
| 100 | /* The following statements set machine constants */
|
|---|
| 101 |
|
|---|
| 102 | static const G4double base;
|
|---|
| 103 | static const G4double eta;
|
|---|
| 104 | static const G4double infin;
|
|---|
| 105 | static const G4double smalno;
|
|---|
| 106 | static const G4double are;
|
|---|
| 107 | static const G4double mre;
|
|---|
| 108 | static const G4double lo;
|
|---|
| 109 |
|
|---|
| 110 | void Quadratic(G4double a,G4double b1,G4double c,
|
|---|
| 111 | G4double *sr,G4double *si, G4double *lr,G4double *li);
|
|---|
| 112 | void ComputeFixedShiftPolynomial(G4int l2, G4int *nz);
|
|---|
| 113 | void QuadraticPolynomialIteration(G4double *uu,G4double *vv,G4int *nz);
|
|---|
| 114 | void RealPolynomialIteration(G4double *sss, G4int *nz, G4int *iflag);
|
|---|
| 115 | void ComputeScalarFactors(G4int *type);
|
|---|
| 116 | void ComputeNextPolynomial(G4int *type);
|
|---|
| 117 | void ComputeNewEstimate(G4int type,G4double *uu,G4double *vv);
|
|---|
| 118 | void QuadraticSyntheticDivision(G4int n, G4double *u, G4double *v,
|
|---|
| 119 | std::vector<G4double> &p,
|
|---|
| 120 | std::vector<G4double> &q,
|
|---|
| 121 | G4double *a, G4double *b);
|
|---|
| 122 | };
|
|---|
| 123 |
|
|---|
| 124 | #endif
|
|---|