source: trunk/source/global/HEPNumerics/include/G4PolynomialSolver.hh@ 1242

Last change on this file since 1242 was 1228, checked in by garnier, 16 years ago

update geant4.9.3 tag

File size: 4.5 KB
RevLine 
[833]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4PolynomialSolver.hh,v 1.4 2006/06/29 18:59:52 gunter Exp $
[1228]28// GEANT4 tag $Name: geant4-09-03 $
[833]29//
30// class G4PolynomialSolver
31//
32// Class description:
33//
34// G4PolynomialSolver allows the user to solve a polynomial equation
35// with a great precision. This is used by Implicit Equation solver.
36//
37// The Bezier clipping method is used to solve the polynomial.
38//
39// How to use it:
40// Create a class that is the function to be solved.
41// This class could have internal parameters to allow to change
42// the equation to be solved without recreating a new one.
43//
44// Define a Polynomial solver, example:
45// G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
46// PolySolver (&MyFunction,
47// &MyFunctionClass::Function,
48// &MyFunctionClass::Derivative,
49// precision);
50//
51// The precision is relative to the function to solve.
52//
53// In MyFunctionClass, provide the function to solve and its derivative:
54// Example of function to provide :
55//
56// x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
57//
58// G4double MyFunctionClass::Function(G4double value)
59// {
60// G4double Lx,Ly,Lz;
61// G4double result;
62//
63// Lx = x + value*dx;
64// Ly = y + value*dy;
65// Lz = z + value*dz;
66//
67// result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
68//
69// return result ;
70// }
71//
72// G4double MyFunctionClass::Derivative(G4double value)
73// {
74// G4double Lx,Ly,Lz;
75// G4double result;
76//
77// Lx = x + value*dx;
78// Ly = y + value*dy;
79// Lz = z + value*dz;
80//
81// result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
82// result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
83// result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
84//
85// return result;
86// }
87//
88// Then to have a root inside an interval [IntervalMin,IntervalMax] do the
89// following:
90//
91// MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
92//
93
94// History:
95//
96// - 19.12.00 E.Medernach, First implementation
97//
98
99#ifndef G4POL_SOLVER_HH
100#define G4POL_SOLVER_HH
101
102#include "globals.hh"
103
104template <class T, class F>
105class G4PolynomialSolver
106{
107public: // with description
108
109 G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);
110 ~G4PolynomialSolver();
111
112
113 G4double solve (G4double IntervalMin, G4double IntervalMax);
114
115private:
116
117 G4double Newton (G4double IntervalMin, G4double IntervalMax);
118 //General Newton method with Bezier Clipping
119
120 // Works for polynomial of order less or equal than 4.
121 // But could be changed to work for polynomial of any order providing
122 // that we find the bezier control points.
123
124 G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax);
125 // This is just one iteration of Bezier Clipping
126
127
128 T* FunctionClass ;
129 F Function ;
130 F Derivative ;
131
132 G4double Precision;
133};
134
135#include "G4PolynomialSolver.icc"
136
137#endif
Note: See TracBrowser for help on using the repository browser.