| [833] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4PolynomialSolver.hh,v 1.4 2006/06/29 18:59:52 gunter Exp $
|
|---|
| [1228] | 28 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| [833] | 29 | //
|
|---|
| 30 | // class G4PolynomialSolver
|
|---|
| 31 | //
|
|---|
| 32 | // Class description:
|
|---|
| 33 | //
|
|---|
| 34 | // G4PolynomialSolver allows the user to solve a polynomial equation
|
|---|
| 35 | // with a great precision. This is used by Implicit Equation solver.
|
|---|
| 36 | //
|
|---|
| 37 | // The Bezier clipping method is used to solve the polynomial.
|
|---|
| 38 | //
|
|---|
| 39 | // How to use it:
|
|---|
| 40 | // Create a class that is the function to be solved.
|
|---|
| 41 | // This class could have internal parameters to allow to change
|
|---|
| 42 | // the equation to be solved without recreating a new one.
|
|---|
| 43 | //
|
|---|
| 44 | // Define a Polynomial solver, example:
|
|---|
| 45 | // G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
|
|---|
| 46 | // PolySolver (&MyFunction,
|
|---|
| 47 | // &MyFunctionClass::Function,
|
|---|
| 48 | // &MyFunctionClass::Derivative,
|
|---|
| 49 | // precision);
|
|---|
| 50 | //
|
|---|
| 51 | // The precision is relative to the function to solve.
|
|---|
| 52 | //
|
|---|
| 53 | // In MyFunctionClass, provide the function to solve and its derivative:
|
|---|
| 54 | // Example of function to provide :
|
|---|
| 55 | //
|
|---|
| 56 | // x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
|
|---|
| 57 | //
|
|---|
| 58 | // G4double MyFunctionClass::Function(G4double value)
|
|---|
| 59 | // {
|
|---|
| 60 | // G4double Lx,Ly,Lz;
|
|---|
| 61 | // G4double result;
|
|---|
| 62 | //
|
|---|
| 63 | // Lx = x + value*dx;
|
|---|
| 64 | // Ly = y + value*dy;
|
|---|
| 65 | // Lz = z + value*dz;
|
|---|
| 66 | //
|
|---|
| 67 | // result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
|
|---|
| 68 | //
|
|---|
| 69 | // return result ;
|
|---|
| 70 | // }
|
|---|
| 71 | //
|
|---|
| 72 | // G4double MyFunctionClass::Derivative(G4double value)
|
|---|
| 73 | // {
|
|---|
| 74 | // G4double Lx,Ly,Lz;
|
|---|
| 75 | // G4double result;
|
|---|
| 76 | //
|
|---|
| 77 | // Lx = x + value*dx;
|
|---|
| 78 | // Ly = y + value*dy;
|
|---|
| 79 | // Lz = z + value*dz;
|
|---|
| 80 | //
|
|---|
| 81 | // result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
|
|---|
| 82 | // result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
|
|---|
| 83 | // result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
|
|---|
| 84 | //
|
|---|
| 85 | // return result;
|
|---|
| 86 | // }
|
|---|
| 87 | //
|
|---|
| 88 | // Then to have a root inside an interval [IntervalMin,IntervalMax] do the
|
|---|
| 89 | // following:
|
|---|
| 90 | //
|
|---|
| 91 | // MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
|
|---|
| 92 | //
|
|---|
| 93 |
|
|---|
| 94 | // History:
|
|---|
| 95 | //
|
|---|
| 96 | // - 19.12.00 E.Medernach, First implementation
|
|---|
| 97 | //
|
|---|
| 98 |
|
|---|
| 99 | #ifndef G4POL_SOLVER_HH
|
|---|
| 100 | #define G4POL_SOLVER_HH
|
|---|
| 101 |
|
|---|
| 102 | #include "globals.hh"
|
|---|
| 103 |
|
|---|
| 104 | template <class T, class F>
|
|---|
| 105 | class G4PolynomialSolver
|
|---|
| 106 | {
|
|---|
| 107 | public: // with description
|
|---|
| 108 |
|
|---|
| 109 | G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);
|
|---|
| 110 | ~G4PolynomialSolver();
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 | G4double solve (G4double IntervalMin, G4double IntervalMax);
|
|---|
| 114 |
|
|---|
| 115 | private:
|
|---|
| 116 |
|
|---|
| 117 | G4double Newton (G4double IntervalMin, G4double IntervalMax);
|
|---|
| 118 | //General Newton method with Bezier Clipping
|
|---|
| 119 |
|
|---|
| 120 | // Works for polynomial of order less or equal than 4.
|
|---|
| 121 | // But could be changed to work for polynomial of any order providing
|
|---|
| 122 | // that we find the bezier control points.
|
|---|
| 123 |
|
|---|
| 124 | G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax);
|
|---|
| 125 | // This is just one iteration of Bezier Clipping
|
|---|
| 126 |
|
|---|
| 127 |
|
|---|
| 128 | T* FunctionClass ;
|
|---|
| 129 | F Function ;
|
|---|
| 130 | F Derivative ;
|
|---|
| 131 |
|
|---|
| 132 | G4double Precision;
|
|---|
| 133 | };
|
|---|
| 134 |
|
|---|
| 135 | #include "G4PolynomialSolver.icc"
|
|---|
| 136 |
|
|---|
| 137 | #endif
|
|---|