// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PolynomialSolver.icc,v 1.8 2006/06/29 18:59:54 gunter Exp $ // GEANT4 tag $Name: geant4-09-02-ref-02 $ // // class G4PolynomialSolver // // 19.12.00 E.Medernach, First implementation // #define POLEPSILON 1e-12 #define POLINFINITY 9.0E99 #define ITERATION 12 // 20 But 8 is really enough for Newton with a good guess template G4PolynomialSolver::G4PolynomialSolver (T* typeF, F func, F deriv, G4double precision) { Precision = precision ; FunctionClass = typeF ; Function = func ; Derivative = deriv ; } template G4PolynomialSolver::~G4PolynomialSolver () { } template G4double G4PolynomialSolver::solve(G4double IntervalMin, G4double IntervalMax) { return Newton(IntervalMin,IntervalMax); } /* If we want to be general this could work for any polynomial of order more that 4 if we find the (ORDER + 1) control points */ #define NBBEZIER 5 template G4int G4PolynomialSolver::BezierClipping(/*T* typeF,F func,F deriv,*/ G4double *IntervalMin, G4double *IntervalMax) { /** BezierClipping is a clipping interval Newton method **/ /** It works by clipping the area where the polynomial is **/ G4double P[NBBEZIER][2],D[2]; G4double NewMin,NewMax; G4int IntervalIsVoid = 1; /*** Calculating Control Points ***/ /* We see the polynomial as a Bezier curve for some control points to find */ /* For 5 control points (polynomial of degree 4) this is: 0 p0 = F((*IntervalMin)) 1/4 p1 = F((*IntervalMin)) + ((*IntervalMax) - (*IntervalMin))/4 * F'((*IntervalMin)) 2/4 p2 = 1/6 * (16*F(((*IntervalMax) + (*IntervalMin))/2) - (p0 + 4*p1 + 4*p3 + p4)) 3/4 p3 = F((*IntervalMax)) - ((*IntervalMax) - (*IntervalMin))/4 * F'((*IntervalMax)) 1 p4 = F((*IntervalMax)) */ /* x,y,z,dx,dy,dz are constant during searching */ D[0] = (FunctionClass->*Derivative)(*IntervalMin); P[0][0] = (*IntervalMin); P[0][1] = (FunctionClass->*Function)(*IntervalMin); if (std::fabs(P[0][1]) < Precision) { return 1; } if (((*IntervalMax) - (*IntervalMin)) < POLEPSILON) { return 1; } P[1][0] = (*IntervalMin) + ((*IntervalMax) - (*IntervalMin))/4; P[1][1] = P[0][1] + (((*IntervalMax) - (*IntervalMin))/4.0) * D[0]; D[1] = (FunctionClass->*Derivative)(*IntervalMax); P[4][0] = (*IntervalMax); P[4][1] = (FunctionClass->*Function)(*IntervalMax); P[3][0] = (*IntervalMax) - ((*IntervalMax) - (*IntervalMin))/4; P[3][1] = P[4][1] - ((*IntervalMax) - (*IntervalMin))/4 * D[1]; P[2][0] = ((*IntervalMax) + (*IntervalMin))/2; P[2][1] = (16*(FunctionClass->*Function)(((*IntervalMax)+(*IntervalMin))/2) - (P[0][1] + 4*P[1][1] + 4*P[3][1] + P[4][1]))/6 ; { G4double Intersection ; G4int i,j; NewMin = (*IntervalMax) ; NewMax = (*IntervalMin) ; for (i=0;i<5;i++) for (j=i+1;j<5;j++) { /* there is an intersection only if each have different signs */ if (((P[j][1] > -Precision) && (P[i][1] < Precision)) || ((P[j][1] < Precision) && (P[i][1] > -Precision))) { IntervalIsVoid = 0; Intersection = P[j][0] - P[j][1]*((P[i][0] - P[j][0])/ (P[i][1] - P[j][1])); if (Intersection < NewMin) { NewMin = Intersection; } if (Intersection > NewMax) { NewMax = Intersection; } } } if (IntervalIsVoid != 1) { (*IntervalMax) = NewMax; (*IntervalMin) = NewMin; } } if (IntervalIsVoid == 1) { return -1; } return 0; } template G4double G4PolynomialSolver::Newton (G4double IntervalMin, G4double IntervalMax) { /* So now we have a good guess and an interval where if there are an intersection the root must be */ G4double Value = 0; G4double Gradient = 0; G4double Lambda ; G4int i=0; G4int j=0; /* Reduce interval before applying Newton Method */ { G4int NewtonIsSafe ; while ((NewtonIsSafe = BezierClipping(&IntervalMin,&IntervalMax)) == 0) ; if (NewtonIsSafe == -1) { return POLINFINITY; } } Lambda = IntervalMin; Value = (FunctionClass->*Function)(Lambda); // while ((std::fabs(Value) > Precision)) { while (j != -1) { Value = (FunctionClass->*Function)(Lambda); Gradient = (FunctionClass->*Derivative)(Lambda); Lambda = Lambda - Value/Gradient ; if (std::fabs(Value) <= Precision) { j ++; if (j == 2) { j = -1; } } else { i ++; if (i > ITERATION) return POLINFINITY; } } return Lambda ; }