| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4PolynomialSolver.icc,v 1.8 2006/06/29 18:59:54 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // class G4PolynomialSolver
|
|---|
| 31 | //
|
|---|
| 32 | // 19.12.00 E.Medernach, First implementation
|
|---|
| 33 | //
|
|---|
| 34 |
|
|---|
| 35 | #define POLEPSILON 1e-12
|
|---|
| 36 | #define POLINFINITY 9.0E99
|
|---|
| 37 | #define ITERATION 12 // 20 But 8 is really enough for Newton with a good guess
|
|---|
| 38 |
|
|---|
| 39 | template <class T, class F>
|
|---|
| 40 | G4PolynomialSolver<T,F>::G4PolynomialSolver (T* typeF, F func, F deriv,
|
|---|
| 41 | G4double precision)
|
|---|
| 42 | {
|
|---|
| 43 | Precision = precision ;
|
|---|
| 44 | FunctionClass = typeF ;
|
|---|
| 45 | Function = func ;
|
|---|
| 46 | Derivative = deriv ;
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | template <class T, class F>
|
|---|
| 50 | G4PolynomialSolver<T,F>::~G4PolynomialSolver ()
|
|---|
| 51 | {
|
|---|
| 52 | }
|
|---|
| 53 |
|
|---|
| 54 | template <class T, class F>
|
|---|
| 55 | G4double G4PolynomialSolver<T,F>::solve(G4double IntervalMin,
|
|---|
| 56 | G4double IntervalMax)
|
|---|
| 57 | {
|
|---|
| 58 | return Newton(IntervalMin,IntervalMax);
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 |
|
|---|
| 62 | /* If we want to be general this could work for any
|
|---|
| 63 | polynomial of order more that 4 if we find the (ORDER + 1)
|
|---|
| 64 | control points
|
|---|
| 65 | */
|
|---|
| 66 | #define NBBEZIER 5
|
|---|
| 67 |
|
|---|
| 68 | template <class T, class F>
|
|---|
| 69 | G4int
|
|---|
| 70 | G4PolynomialSolver<T,F>::BezierClipping(/*T* typeF,F func,F deriv,*/
|
|---|
| 71 | G4double *IntervalMin,
|
|---|
| 72 | G4double *IntervalMax)
|
|---|
| 73 | {
|
|---|
| 74 | /** BezierClipping is a clipping interval Newton method **/
|
|---|
| 75 | /** It works by clipping the area where the polynomial is **/
|
|---|
| 76 |
|
|---|
| 77 | G4double P[NBBEZIER][2],D[2];
|
|---|
| 78 | G4double NewMin,NewMax;
|
|---|
| 79 |
|
|---|
| 80 | G4int IntervalIsVoid = 1;
|
|---|
| 81 |
|
|---|
| 82 | /*** Calculating Control Points ***/
|
|---|
| 83 | /* We see the polynomial as a Bezier curve for some control points to find */
|
|---|
| 84 |
|
|---|
| 85 | /*
|
|---|
| 86 | For 5 control points (polynomial of degree 4) this is:
|
|---|
| 87 |
|
|---|
| 88 | 0 p0 = F((*IntervalMin))
|
|---|
| 89 | 1/4 p1 = F((*IntervalMin)) + ((*IntervalMax) - (*IntervalMin))/4
|
|---|
| 90 | * F'((*IntervalMin))
|
|---|
| 91 | 2/4 p2 = 1/6 * (16*F(((*IntervalMax) + (*IntervalMin))/2)
|
|---|
| 92 | - (p0 + 4*p1 + 4*p3 + p4))
|
|---|
| 93 | 3/4 p3 = F((*IntervalMax)) - ((*IntervalMax) - (*IntervalMin))/4
|
|---|
| 94 | * F'((*IntervalMax))
|
|---|
| 95 | 1 p4 = F((*IntervalMax))
|
|---|
| 96 | */
|
|---|
| 97 |
|
|---|
| 98 | /* x,y,z,dx,dy,dz are constant during searching */
|
|---|
| 99 |
|
|---|
| 100 | D[0] = (FunctionClass->*Derivative)(*IntervalMin);
|
|---|
| 101 |
|
|---|
| 102 | P[0][0] = (*IntervalMin);
|
|---|
| 103 | P[0][1] = (FunctionClass->*Function)(*IntervalMin);
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | if (std::fabs(P[0][1]) < Precision) {
|
|---|
| 107 | return 1;
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | if (((*IntervalMax) - (*IntervalMin)) < POLEPSILON) {
|
|---|
| 111 | return 1;
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | P[1][0] = (*IntervalMin) + ((*IntervalMax) - (*IntervalMin))/4;
|
|---|
| 115 | P[1][1] = P[0][1] + (((*IntervalMax) - (*IntervalMin))/4.0) * D[0];
|
|---|
| 116 |
|
|---|
| 117 | D[1] = (FunctionClass->*Derivative)(*IntervalMax);
|
|---|
| 118 |
|
|---|
| 119 | P[4][0] = (*IntervalMax);
|
|---|
| 120 | P[4][1] = (FunctionClass->*Function)(*IntervalMax);
|
|---|
| 121 |
|
|---|
| 122 | P[3][0] = (*IntervalMax) - ((*IntervalMax) - (*IntervalMin))/4;
|
|---|
| 123 | P[3][1] = P[4][1] - ((*IntervalMax) - (*IntervalMin))/4 * D[1];
|
|---|
| 124 |
|
|---|
| 125 | P[2][0] = ((*IntervalMax) + (*IntervalMin))/2;
|
|---|
| 126 | P[2][1] = (16*(FunctionClass->*Function)(((*IntervalMax)+(*IntervalMin))/2)
|
|---|
| 127 | - (P[0][1] + 4*P[1][1] + 4*P[3][1] + P[4][1]))/6 ;
|
|---|
| 128 |
|
|---|
| 129 | {
|
|---|
| 130 | G4double Intersection ;
|
|---|
| 131 | G4int i,j;
|
|---|
| 132 |
|
|---|
| 133 | NewMin = (*IntervalMax) ;
|
|---|
| 134 | NewMax = (*IntervalMin) ;
|
|---|
| 135 |
|
|---|
| 136 | for (i=0;i<5;i++)
|
|---|
| 137 | for (j=i+1;j<5;j++)
|
|---|
| 138 | {
|
|---|
| 139 | /* there is an intersection only if each have different signs */
|
|---|
| 140 | if (((P[j][1] > -Precision) && (P[i][1] < Precision)) ||
|
|---|
| 141 | ((P[j][1] < Precision) && (P[i][1] > -Precision))) {
|
|---|
| 142 | IntervalIsVoid = 0;
|
|---|
| 143 | Intersection = P[j][0] - P[j][1]*((P[i][0] - P[j][0])/
|
|---|
| 144 | (P[i][1] - P[j][1]));
|
|---|
| 145 | if (Intersection < NewMin) {
|
|---|
| 146 | NewMin = Intersection;
|
|---|
| 147 | }
|
|---|
| 148 | if (Intersection > NewMax) {
|
|---|
| 149 | NewMax = Intersection;
|
|---|
| 150 | }
|
|---|
| 151 | }
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 |
|
|---|
| 155 | if (IntervalIsVoid != 1) {
|
|---|
| 156 | (*IntervalMax) = NewMax;
|
|---|
| 157 | (*IntervalMin) = NewMin;
|
|---|
| 158 | }
|
|---|
| 159 | }
|
|---|
| 160 |
|
|---|
| 161 | if (IntervalIsVoid == 1) {
|
|---|
| 162 | return -1;
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 | return 0;
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 | template <class T, class F>
|
|---|
| 169 | G4double G4PolynomialSolver<T,F>::Newton (G4double IntervalMin,
|
|---|
| 170 | G4double IntervalMax)
|
|---|
| 171 | {
|
|---|
| 172 | /* So now we have a good guess and an interval where
|
|---|
| 173 | if there are an intersection the root must be */
|
|---|
| 174 |
|
|---|
| 175 | G4double Value = 0;
|
|---|
| 176 | G4double Gradient = 0;
|
|---|
| 177 | G4double Lambda ;
|
|---|
| 178 |
|
|---|
| 179 | G4int i=0;
|
|---|
| 180 | G4int j=0;
|
|---|
| 181 |
|
|---|
| 182 |
|
|---|
| 183 | /* Reduce interval before applying Newton Method */
|
|---|
| 184 | {
|
|---|
| 185 | G4int NewtonIsSafe ;
|
|---|
| 186 |
|
|---|
| 187 | while ((NewtonIsSafe = BezierClipping(&IntervalMin,&IntervalMax)) == 0) ;
|
|---|
| 188 |
|
|---|
| 189 | if (NewtonIsSafe == -1) {
|
|---|
| 190 | return POLINFINITY;
|
|---|
| 191 | }
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | Lambda = IntervalMin;
|
|---|
| 195 | Value = (FunctionClass->*Function)(Lambda);
|
|---|
| 196 |
|
|---|
| 197 |
|
|---|
| 198 | // while ((std::fabs(Value) > Precision)) {
|
|---|
| 199 | while (j != -1) {
|
|---|
| 200 |
|
|---|
| 201 | Value = (FunctionClass->*Function)(Lambda);
|
|---|
| 202 |
|
|---|
| 203 | Gradient = (FunctionClass->*Derivative)(Lambda);
|
|---|
| 204 |
|
|---|
| 205 | Lambda = Lambda - Value/Gradient ;
|
|---|
| 206 |
|
|---|
| 207 | if (std::fabs(Value) <= Precision) {
|
|---|
| 208 | j ++;
|
|---|
| 209 | if (j == 2) {
|
|---|
| 210 | j = -1;
|
|---|
| 211 | }
|
|---|
| 212 | } else {
|
|---|
| 213 | i ++;
|
|---|
| 214 |
|
|---|
| 215 | if (i > ITERATION)
|
|---|
| 216 | return POLINFINITY;
|
|---|
| 217 | }
|
|---|
| 218 | }
|
|---|
| 219 | return Lambda ;
|
|---|
| 220 | }
|
|---|