| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4ChebyshevApproximation.cc,v 1.7 2007/11/13 17:35:06 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 |
|
|---|
| 31 | #include "G4ChebyshevApproximation.hh"
|
|---|
| 32 |
|
|---|
| 33 | // Constructor for initialisation of the class data members.
|
|---|
| 34 | // It creates the array fChebyshevCof[0,...,fNumber-1], fNumber = n ;
|
|---|
| 35 | // which consists of Chebyshev coefficients describing the function
|
|---|
| 36 | // pointed by pFunction. The values a and b fix the interval of validity
|
|---|
| 37 | // of the Chebyshev approximation.
|
|---|
| 38 |
|
|---|
| 39 | G4ChebyshevApproximation::G4ChebyshevApproximation( function pFunction,
|
|---|
| 40 | G4int n,
|
|---|
| 41 | G4double a,
|
|---|
| 42 | G4double b )
|
|---|
| 43 | : fFunction(pFunction), fNumber(n),
|
|---|
| 44 | fChebyshevCof(new G4double[fNumber]),
|
|---|
| 45 | fMean(0.5*(b+a)), fDiff(0.5*(b-a))
|
|---|
| 46 | {
|
|---|
| 47 | G4int i=0, j=0 ;
|
|---|
| 48 | G4double rootSum=0.0, cofj=0.0 ;
|
|---|
| 49 | G4double* tempFunction = new G4double[fNumber] ;
|
|---|
| 50 | G4double weight = 2.0/fNumber ;
|
|---|
| 51 | G4double cof = 0.5*weight*pi ; // pi/n
|
|---|
| 52 |
|
|---|
| 53 | for (i=0;i<fNumber;i++)
|
|---|
| 54 | {
|
|---|
| 55 | rootSum = std::cos(cof*(i+0.5)) ;
|
|---|
| 56 | tempFunction[i]= fFunction(rootSum*fDiff+fMean) ;
|
|---|
| 57 | }
|
|---|
| 58 | for (j=0;j<fNumber;j++)
|
|---|
| 59 | {
|
|---|
| 60 | cofj = cof*j ;
|
|---|
| 61 | rootSum = 0.0 ;
|
|---|
| 62 |
|
|---|
| 63 | for (i=0;i<fNumber;i++)
|
|---|
| 64 | {
|
|---|
| 65 | rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
|
|---|
| 66 | }
|
|---|
| 67 | fChebyshevCof[j] = weight*rootSum ;
|
|---|
| 68 | }
|
|---|
| 69 | delete[] tempFunction ;
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 | // --------------------------------------------------------------------
|
|---|
| 73 | //
|
|---|
| 74 | // Constructor for creation of Chebyshev coefficients for mx-derivative
|
|---|
| 75 | // from pFunction. The value of mx ! MUST BE ! < nx , because the result
|
|---|
| 76 | // array of fChebyshevCof will be of (nx-mx) size. The values a and b
|
|---|
| 77 | // fix the interval of validity of the Chebyshev approximation.
|
|---|
| 78 |
|
|---|
| 79 | G4ChebyshevApproximation::
|
|---|
| 80 | G4ChebyshevApproximation( function pFunction,
|
|---|
| 81 | G4int nx, G4int mx,
|
|---|
| 82 | G4double a, G4double b )
|
|---|
| 83 | : fFunction(pFunction), fNumber(nx),
|
|---|
| 84 | fChebyshevCof(new G4double[fNumber]),
|
|---|
| 85 | fMean(0.5*(b+a)), fDiff(0.5*(b-a))
|
|---|
| 86 | {
|
|---|
| 87 | if(nx <= mx)
|
|---|
| 88 | {
|
|---|
| 89 | G4Exception("G4ChebyshevApproximation::G4ChebyshevApproximation()",
|
|---|
| 90 | "InvalidCall", FatalException, "Invalid arguments !") ;
|
|---|
| 91 | }
|
|---|
| 92 | G4int i=0, j=0 ;
|
|---|
| 93 | G4double rootSum = 0.0, cofj=0.0;
|
|---|
| 94 | G4double* tempFunction = new G4double[fNumber] ;
|
|---|
| 95 | G4double weight = 2.0/fNumber ;
|
|---|
| 96 | G4double cof = 0.5*weight*pi ; // pi/nx
|
|---|
| 97 |
|
|---|
| 98 | for (i=0;i<fNumber;i++)
|
|---|
| 99 | {
|
|---|
| 100 | rootSum = std::cos(cof*(i+0.5)) ;
|
|---|
| 101 | tempFunction[i] = fFunction(rootSum*fDiff+fMean) ;
|
|---|
| 102 | }
|
|---|
| 103 | for (j=0;j<fNumber;j++)
|
|---|
| 104 | {
|
|---|
| 105 | cofj = cof*j ;
|
|---|
| 106 | rootSum = 0.0 ;
|
|---|
| 107 |
|
|---|
| 108 | for (i=0;i<fNumber;i++)
|
|---|
| 109 | {
|
|---|
| 110 | rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
|
|---|
| 111 | }
|
|---|
| 112 | fChebyshevCof[j] = weight*rootSum ; // corresponds to pFunction
|
|---|
| 113 | }
|
|---|
| 114 | // Chebyshev coefficients for (mx)-derivative of pFunction
|
|---|
| 115 |
|
|---|
| 116 | for(i=1;i<=mx;i++)
|
|---|
| 117 | {
|
|---|
| 118 | DerivativeChebyshevCof(tempFunction) ;
|
|---|
| 119 | fNumber-- ;
|
|---|
| 120 | for(j=0;j<fNumber;j++)
|
|---|
| 121 | {
|
|---|
| 122 | fChebyshevCof[j] = tempFunction[j] ; // corresponds to (i)-derivative
|
|---|
| 123 | }
|
|---|
| 124 | }
|
|---|
| 125 | delete[] tempFunction ; // delete of dynamically allocated tempFunction
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | // ------------------------------------------------------
|
|---|
| 129 | //
|
|---|
| 130 | // Constructor for creation of Chebyshev coefficients for integral
|
|---|
| 131 | // from pFunction.
|
|---|
| 132 |
|
|---|
| 133 | G4ChebyshevApproximation::G4ChebyshevApproximation( function pFunction,
|
|---|
| 134 | G4double a,
|
|---|
| 135 | G4double b,
|
|---|
| 136 | G4int n )
|
|---|
| 137 | : fFunction(pFunction), fNumber(n),
|
|---|
| 138 | fChebyshevCof(new G4double[fNumber]),
|
|---|
| 139 | fMean(0.5*(b+a)), fDiff(0.5*(b-a))
|
|---|
| 140 | {
|
|---|
| 141 | G4int i=0, j=0;
|
|---|
| 142 | G4double rootSum=0.0, cofj=0.0;
|
|---|
| 143 | G4double* tempFunction = new G4double[fNumber] ;
|
|---|
| 144 | G4double weight = 2.0/fNumber;
|
|---|
| 145 | G4double cof = 0.5*weight*pi ; // pi/n
|
|---|
| 146 |
|
|---|
| 147 | for (i=0;i<fNumber;i++)
|
|---|
| 148 | {
|
|---|
| 149 | rootSum = std::cos(cof*(i+0.5)) ;
|
|---|
| 150 | tempFunction[i]= fFunction(rootSum*fDiff+fMean) ;
|
|---|
| 151 | }
|
|---|
| 152 | for (j=0;j<fNumber;j++)
|
|---|
| 153 | {
|
|---|
| 154 | cofj = cof*j ;
|
|---|
| 155 | rootSum = 0.0 ;
|
|---|
| 156 |
|
|---|
| 157 | for (i=0;i<fNumber;i++)
|
|---|
| 158 | {
|
|---|
| 159 | rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
|
|---|
| 160 | }
|
|---|
| 161 | fChebyshevCof[j] = weight*rootSum ; // corresponds to pFunction
|
|---|
| 162 | }
|
|---|
| 163 | // Chebyshev coefficients for integral of pFunction
|
|---|
| 164 |
|
|---|
| 165 | IntegralChebyshevCof(tempFunction) ;
|
|---|
| 166 | for(j=0;j<fNumber;j++)
|
|---|
| 167 | {
|
|---|
| 168 | fChebyshevCof[j] = tempFunction[j] ; // corresponds to integral
|
|---|
| 169 | }
|
|---|
| 170 | delete[] tempFunction ; // delete of dynamically allocated tempFunction
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 | // ---------------------------------------------------------------
|
|---|
| 176 | //
|
|---|
| 177 | // Destructor deletes the array of Chebyshev coefficients
|
|---|
| 178 |
|
|---|
| 179 | G4ChebyshevApproximation::~G4ChebyshevApproximation()
|
|---|
| 180 | {
|
|---|
| 181 | delete[] fChebyshevCof ;
|
|---|
| 182 | }
|
|---|
| 183 |
|
|---|
| 184 | // ---------------------------------------------------------------
|
|---|
| 185 | //
|
|---|
| 186 | // Access function for Chebyshev coefficients
|
|---|
| 187 | //
|
|---|
| 188 |
|
|---|
| 189 |
|
|---|
| 190 | G4double
|
|---|
| 191 | G4ChebyshevApproximation::GetChebyshevCof(G4int number) const
|
|---|
| 192 | {
|
|---|
| 193 | if(number < 0 && number >= fNumber)
|
|---|
| 194 | {
|
|---|
| 195 | G4Exception("G4ChebyshevApproximation::GetChebyshevCof()",
|
|---|
| 196 | "InvalidCall", FatalException, "Argument out of range !") ;
|
|---|
| 197 | }
|
|---|
| 198 | return fChebyshevCof[number] ;
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 | // --------------------------------------------------------------
|
|---|
| 202 | //
|
|---|
| 203 | // Evaluate the value of fFunction at the point x via the Chebyshev coefficients
|
|---|
| 204 | // fChebyshevCof[0,...,fNumber-1]
|
|---|
| 205 |
|
|---|
| 206 | G4double
|
|---|
| 207 | G4ChebyshevApproximation::ChebyshevEvaluation(G4double x) const
|
|---|
| 208 | {
|
|---|
| 209 | G4double evaluate = 0.0, evaluate2 = 0.0, temp = 0.0,
|
|---|
| 210 | xReduced = 0.0, xReduced2 = 0.0 ;
|
|---|
| 211 |
|
|---|
| 212 | if ((x-fMean+fDiff)*(x-fMean-fDiff) > 0.0)
|
|---|
| 213 | {
|
|---|
| 214 | G4Exception("G4ChebyshevApproximation::ChebyshevEvaluation()",
|
|---|
| 215 | "InvalidCall", FatalException, "Invalid argument !") ;
|
|---|
| 216 | }
|
|---|
| 217 | xReduced = (x-fMean)/fDiff ;
|
|---|
| 218 | xReduced2 = 2.0*xReduced ;
|
|---|
| 219 | for (G4int i=fNumber-1;i>=1;i--)
|
|---|
| 220 | {
|
|---|
| 221 | temp = evaluate ;
|
|---|
| 222 | evaluate = xReduced2*evaluate - evaluate2 + fChebyshevCof[i] ;
|
|---|
| 223 | evaluate2 = temp ;
|
|---|
| 224 | }
|
|---|
| 225 | return xReduced*evaluate - evaluate2 + 0.5*fChebyshevCof[0] ;
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | // ------------------------------------------------------------------
|
|---|
| 229 | //
|
|---|
| 230 | // Returns the array derCof[0,...,fNumber-2], the Chebyshev coefficients of the
|
|---|
| 231 | // derivative of the function whose coefficients are fChebyshevCof
|
|---|
| 232 |
|
|---|
| 233 | void
|
|---|
| 234 | G4ChebyshevApproximation::DerivativeChebyshevCof(G4double derCof[]) const
|
|---|
| 235 | {
|
|---|
| 236 | G4double cof = 1.0/fDiff ;
|
|---|
| 237 | derCof[fNumber-1] = 0.0 ;
|
|---|
| 238 | derCof[fNumber-2] = 2*(fNumber-1)*fChebyshevCof[fNumber-1] ;
|
|---|
| 239 | for(G4int i=fNumber-3;i>=0;i--)
|
|---|
| 240 | {
|
|---|
| 241 | derCof[i] = derCof[i+2] + 2*(i+1)*fChebyshevCof[i+1] ;
|
|---|
| 242 | }
|
|---|
| 243 | for(G4int j=0;j<fNumber;j++)
|
|---|
| 244 | {
|
|---|
| 245 | derCof[j] *= cof ;
|
|---|
| 246 | }
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 | // ------------------------------------------------------------------------
|
|---|
| 250 | //
|
|---|
| 251 | // This function produces the array integralCof[0,...,fNumber-1] , the Chebyshev
|
|---|
| 252 | // coefficients of the integral of the function whose coefficients are
|
|---|
| 253 | // fChebyshevCof[]. The constant of integration is set so that the integral
|
|---|
| 254 | // vanishes at the point (fMean - fDiff), i.e. at the begining of the interval of
|
|---|
| 255 | // validity (we start the integration from this point).
|
|---|
| 256 | //
|
|---|
| 257 |
|
|---|
| 258 | void
|
|---|
| 259 | G4ChebyshevApproximation::IntegralChebyshevCof(G4double integralCof[]) const
|
|---|
| 260 | {
|
|---|
| 261 | G4double cof = 0.5*fDiff, sum = 0.0, factor = 1.0 ;
|
|---|
| 262 | for(G4int i=1;i<fNumber-1;i++)
|
|---|
| 263 | {
|
|---|
| 264 | integralCof[i] = cof*(fChebyshevCof[i-1] - fChebyshevCof[i+1])/i ;
|
|---|
| 265 | sum += factor*integralCof[i] ;
|
|---|
| 266 | factor = -factor ;
|
|---|
| 267 | }
|
|---|
| 268 | integralCof[fNumber-1] = cof*fChebyshevCof[fNumber-2]/(fNumber-1) ;
|
|---|
| 269 | sum += factor*integralCof[fNumber-1] ;
|
|---|
| 270 | integralCof[0] = 2.0*sum ; // set the constant of integration
|
|---|
| 271 | }
|
|---|