| [833] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| [850] | 27 | // $Id: G4DataInterpolation.cc,v 1.10 2008/03/13 09:35:56 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: HEAD $
|
|---|
| [833] | 29 | //
|
|---|
| 30 | #include "G4DataInterpolation.hh"
|
|---|
| 31 |
|
|---|
| 32 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 33 | //
|
|---|
| 34 | // Constructor for initializing of fArgument, fFunction and fNumber
|
|---|
| 35 | // data members
|
|---|
| 36 |
|
|---|
| 37 | G4DataInterpolation::G4DataInterpolation( G4double pX[],
|
|---|
| 38 | G4double pY[],
|
|---|
| 39 | G4int number )
|
|---|
| 40 | : fArgument(new G4double[number]),
|
|---|
| 41 | fFunction(new G4double[number]),
|
|---|
| 42 | fSecondDerivative(0),
|
|---|
| 43 | fNumber(number)
|
|---|
| 44 | {
|
|---|
| 45 | for(G4int i=0;i<fNumber;i++)
|
|---|
| 46 | {
|
|---|
| 47 | fArgument[i] = pX[i] ;
|
|---|
| 48 | fFunction[i] = pY[i] ;
|
|---|
| 49 | }
|
|---|
| 50 | }
|
|---|
| 51 |
|
|---|
| 52 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 53 | //
|
|---|
| 54 | // Constructor for cubic spline interpolation. It creates the array
|
|---|
| 55 | // fSecondDerivative[0,...fNumber-1] which is used in this interpolation by
|
|---|
| 56 | // the function
|
|---|
| 57 |
|
|---|
| 58 |
|
|---|
| 59 | G4DataInterpolation::G4DataInterpolation( G4double pX[],
|
|---|
| 60 | G4double pY[],
|
|---|
| 61 | G4int number,
|
|---|
| 62 | G4double pFirstDerStart,
|
|---|
| 63 | G4double pFirstDerFinish )
|
|---|
| 64 | : fArgument(new G4double[number]),
|
|---|
| 65 | fFunction(new G4double[number]),
|
|---|
| 66 | fSecondDerivative(new G4double[number]),
|
|---|
| 67 | fNumber(number)
|
|---|
| 68 | {
|
|---|
| 69 | G4int i=0 ;
|
|---|
| 70 | G4double p=0.0, qn=0.0, sig=0.0, un=0.0 ;
|
|---|
| 71 | const G4double maxDerivative = 0.99e30 ;
|
|---|
| 72 | G4double* u = new G4double[fNumber - 1] ;
|
|---|
| 73 |
|
|---|
| 74 | for(i=0;i<fNumber;i++)
|
|---|
| 75 | {
|
|---|
| 76 | fArgument[i] = pX[i] ;
|
|---|
| 77 | fFunction[i] = pY[i] ;
|
|---|
| 78 | }
|
|---|
| 79 | if(pFirstDerStart > maxDerivative)
|
|---|
| 80 | {
|
|---|
| 81 | fSecondDerivative[0] = 0.0 ;
|
|---|
| 82 | u[0] = 0.0 ;
|
|---|
| 83 | }
|
|---|
| 84 | else
|
|---|
| 85 | {
|
|---|
| 86 | fSecondDerivative[0] = -0.5 ;
|
|---|
| 87 | u[0] = (3.0/(fArgument[1]-fArgument[0]))
|
|---|
| 88 | * ((fFunction[1]-fFunction[0])/(fArgument[1]-fArgument[0])
|
|---|
| 89 | - pFirstDerStart) ;
|
|---|
| 90 | }
|
|---|
| 91 |
|
|---|
| 92 | // Decomposition loop for tridiagonal algorithm. fSecondDerivative[i]
|
|---|
| 93 | // and u[i] are used for temporary storage of the decomposed factors.
|
|---|
| 94 |
|
|---|
| 95 | for(i=1;i<fNumber-1;i++)
|
|---|
| 96 | {
|
|---|
| 97 | sig = (fArgument[i]-fArgument[i-1])/(fArgument[i+1]-fArgument[i-1]) ;
|
|---|
| 98 | p = sig*fSecondDerivative[i-1] + 2.0 ;
|
|---|
| 99 | fSecondDerivative[i] = (sig - 1.0)/p ;
|
|---|
| 100 | u[i] = (fFunction[i+1]-fFunction[i])/(fArgument[i+1]-fArgument[i]) -
|
|---|
| 101 | (fFunction[i]-fFunction[i-1])/(fArgument[i]-fArgument[i-1]) ;
|
|---|
| 102 | u[i] =(6.0*u[i]/(fArgument[i+1]-fArgument[i-1]) - sig*u[i-1])/p ;
|
|---|
| 103 | }
|
|---|
| 104 | if(pFirstDerFinish > maxDerivative)
|
|---|
| 105 | {
|
|---|
| 106 | qn = 0.0 ;
|
|---|
| 107 | un = 0.0 ;
|
|---|
| 108 | }
|
|---|
| 109 | else
|
|---|
| 110 | {
|
|---|
| 111 | qn = 0.5 ;
|
|---|
| 112 | un = (3.0/(fArgument[fNumber-1]-fArgument[fNumber-2]))
|
|---|
| 113 | * (pFirstDerFinish - (fFunction[fNumber-1]-fFunction[fNumber-2])
|
|---|
| 114 | / (fArgument[fNumber-1]-fArgument[fNumber-2])) ;
|
|---|
| 115 | }
|
|---|
| 116 | fSecondDerivative[fNumber-1] = (un - qn*u[fNumber-2])/
|
|---|
| 117 | (qn*fSecondDerivative[fNumber-2] + 1.0) ;
|
|---|
| 118 |
|
|---|
| 119 | // The backsubstitution loop for the triagonal algorithm of solving
|
|---|
| 120 | // a linear system of equations.
|
|---|
| 121 |
|
|---|
| 122 | for(G4int k=fNumber-2;k>=0;k--)
|
|---|
| 123 | {
|
|---|
| 124 | fSecondDerivative[k] = fSecondDerivative[k]*fSecondDerivative[k+1] + u[k];
|
|---|
| 125 | }
|
|---|
| 126 | delete[] u ;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 130 | //
|
|---|
| 131 | // Destructor deletes dynamically created arrays for data members: fArgument,
|
|---|
| 132 | // fFunction and fSecondDerivative, all have dimension of fNumber
|
|---|
| 133 |
|
|---|
| 134 | G4DataInterpolation::~G4DataInterpolation()
|
|---|
| 135 | {
|
|---|
| 136 | delete [] fArgument ;
|
|---|
| 137 | delete [] fFunction ;
|
|---|
| 138 | if(fSecondDerivative) { delete [] fSecondDerivative; }
|
|---|
| 139 | }
|
|---|
| 140 |
|
|---|
| 141 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 142 | //
|
|---|
| 143 | // This function returns the value P(pX), where P(x) is polynom of fNumber-1
|
|---|
| 144 | // degree such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1.
|
|---|
| 145 | // This is Lagrange's form of interpolation and it is based on Neville's
|
|---|
| 146 | // algorithm
|
|---|
| 147 |
|
|---|
| 148 | G4double
|
|---|
| 149 | G4DataInterpolation::PolynomInterpolation(G4double pX,
|
|---|
| 150 | G4double& deltaY ) const
|
|---|
| 151 | {
|
|---|
| 152 | G4int i=0, j=1, k=0 ;
|
|---|
| 153 | G4double mult=0.0, difi=0.0, deltaLow=0.0, deltaUp=0.0, cd=0.0, y=0.0 ;
|
|---|
| 154 | G4double* c = new G4double[fNumber] ;
|
|---|
| 155 | G4double* d = new G4double[fNumber] ;
|
|---|
| 156 | G4double diff = std::fabs(pX-fArgument[0]) ;
|
|---|
| 157 | for(i=0;i<fNumber;i++)
|
|---|
| 158 | {
|
|---|
| 159 | difi = std::fabs(pX-fArgument[i]) ;
|
|---|
| 160 | if(difi <diff)
|
|---|
| 161 | {
|
|---|
| 162 | k = i ;
|
|---|
| 163 | diff = difi ;
|
|---|
| 164 | }
|
|---|
| 165 | c[i] = fFunction[i] ;
|
|---|
| 166 | d[i] = fFunction[i] ;
|
|---|
| 167 | }
|
|---|
| 168 | y = fFunction[k--] ;
|
|---|
| 169 | for(j=1;j<fNumber;j++)
|
|---|
| 170 | {
|
|---|
| 171 | for(i=0;i<fNumber-j;i++)
|
|---|
| 172 | {
|
|---|
| 173 | deltaLow = fArgument[i] - pX ;
|
|---|
| 174 | deltaUp = fArgument[i+j] - pX ;
|
|---|
| 175 | cd = c[i+1] - d[i] ;
|
|---|
| 176 | mult = deltaLow - deltaUp ;
|
|---|
| 177 | if (!(mult != 0.0))
|
|---|
| 178 | {
|
|---|
| 179 | G4Exception("G4DataInterpolation::PolynomInterpolation()",
|
|---|
| 180 | "Error", FatalException, "Coincident nodes !") ;
|
|---|
| 181 | }
|
|---|
| 182 | mult = cd/mult ;
|
|---|
| 183 | d[i] = deltaUp*mult ;
|
|---|
| 184 | c[i] = deltaLow*mult ;
|
|---|
| 185 | }
|
|---|
| 186 | y += (deltaY = (2*k < (fNumber - j -1) ? c[k+1] : d[k--] )) ;
|
|---|
| 187 | }
|
|---|
| 188 | delete[] c ;
|
|---|
| 189 | delete[] d ;
|
|---|
| 190 |
|
|---|
| 191 | return y ;
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 195 | //
|
|---|
| 196 | // Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1], this
|
|---|
| 197 | // function calculates an array of coefficients. The coefficients don't provide
|
|---|
| 198 | // usually (fNumber>10) better accuracy for polynom interpolation, as compared
|
|---|
| 199 | // with PolynomInterpolation function. They could be used instead for derivate
|
|---|
| 200 | // calculations and some other applications.
|
|---|
| 201 |
|
|---|
| 202 | void
|
|---|
| 203 | G4DataInterpolation::PolIntCoefficient( G4double cof[]) const
|
|---|
| 204 | {
|
|---|
| 205 | G4int i=0, j=0 ;
|
|---|
| 206 | G4double factor=fNumber, reducedY=0.0, mult=1.0 ;
|
|---|
| 207 | G4double* tempArgument = new G4double[fNumber] ;
|
|---|
| 208 |
|
|---|
| 209 | for(i=0;i<fNumber;i++)
|
|---|
| 210 | {
|
|---|
| 211 | tempArgument[i] = cof[i] = 0.0 ;
|
|---|
| 212 | }
|
|---|
| 213 | tempArgument[fNumber-1] = -fArgument[0] ;
|
|---|
| 214 |
|
|---|
| 215 | for(i=1;i<fNumber;i++)
|
|---|
| 216 | {
|
|---|
| 217 | for(j=fNumber-1-i;j<fNumber-1;j++)
|
|---|
| 218 | {
|
|---|
| 219 | tempArgument[j] -= fArgument[i]*tempArgument[j+1] ;
|
|---|
| 220 | }
|
|---|
| 221 | tempArgument[fNumber-1] -= fArgument[i] ;
|
|---|
| 222 | }
|
|---|
| 223 | for(i=0;i<fNumber;i++)
|
|---|
| 224 | {
|
|---|
| 225 | factor = fNumber ;
|
|---|
| 226 | for(j=fNumber-1;j>=1;j--)
|
|---|
| 227 | {
|
|---|
| 228 | factor = j*tempArgument[j] + factor*fArgument[i] ;
|
|---|
| 229 | }
|
|---|
| 230 | reducedY = fFunction[i]/factor ;
|
|---|
| 231 | mult = 1.0 ;
|
|---|
| 232 | for(j=fNumber-1;j>=0;j--)
|
|---|
| 233 | {
|
|---|
| 234 | cof[j] += mult*reducedY ;
|
|---|
| 235 | mult = tempArgument[j] + mult*fArgument[i] ;
|
|---|
| 236 | }
|
|---|
| 237 | }
|
|---|
| 238 | delete[] tempArgument ;
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 242 | //
|
|---|
| 243 | // The function returns diagonal rational function (Bulirsch and Stoer
|
|---|
| 244 | // algorithm of Neville type) Pn(x)/Qm(x) where P and Q are polynoms.
|
|---|
| 245 | // Tests showed the method is not stable and hasn't advantage if compared
|
|---|
| 246 | // with polynomial interpolation ?!
|
|---|
| 247 |
|
|---|
| 248 | G4double
|
|---|
| 249 | G4DataInterpolation::RationalPolInterpolation(G4double pX,
|
|---|
| 250 | G4double& deltaY ) const
|
|---|
| 251 | {
|
|---|
| 252 | G4int i=0, j=1, k=0 ;
|
|---|
| 253 | const G4double tolerance = 1.6e-24 ;
|
|---|
| 254 | G4double mult=0.0, difi=0.0, cd=0.0, y=0.0, cof=0.0 ;
|
|---|
| 255 | G4double* c = new G4double[fNumber] ;
|
|---|
| 256 | G4double* d = new G4double[fNumber] ;
|
|---|
| 257 | G4double diff = std::fabs(pX-fArgument[0]) ;
|
|---|
| 258 | for(i=0;i<fNumber;i++)
|
|---|
| 259 | {
|
|---|
| 260 | difi = std::fabs(pX-fArgument[i]) ;
|
|---|
| 261 | if (!(difi != 0.0))
|
|---|
| 262 | {
|
|---|
| 263 | y = fFunction[i] ;
|
|---|
| 264 | deltaY = 0.0 ;
|
|---|
| 265 | delete[] c ;
|
|---|
| 266 | delete[] d ;
|
|---|
| 267 | return y ;
|
|---|
| 268 | }
|
|---|
| 269 | else if(difi < diff)
|
|---|
| 270 | {
|
|---|
| 271 | k = i ;
|
|---|
| 272 | diff = difi ;
|
|---|
| 273 | }
|
|---|
| 274 | c[i] = fFunction[i] ;
|
|---|
| 275 | d[i] = fFunction[i] + tolerance ; // to prevent rare zero/zero cases
|
|---|
| 276 | }
|
|---|
| 277 | y = fFunction[k--] ;
|
|---|
| 278 | for(j=1;j<fNumber;j++)
|
|---|
| 279 | {
|
|---|
| 280 | for(i=0;i<fNumber-j;i++)
|
|---|
| 281 | {
|
|---|
| 282 | cd = c[i+1] - d[i] ;
|
|---|
| 283 | difi = fArgument[i+j] - pX ;
|
|---|
| 284 | cof = (fArgument[i] - pX)*d[i]/difi ;
|
|---|
| 285 | mult = cof - c[i+1] ;
|
|---|
| 286 | if (!(mult != 0.0)) // function to be interpolated has pole at pX
|
|---|
| 287 | {
|
|---|
| 288 | G4Exception("G4DataInterpolation::RationalPolInterpolation()",
|
|---|
| 289 | "Error", FatalException, "Coincident nodes !") ;
|
|---|
| 290 | }
|
|---|
| 291 | mult = cd/mult ;
|
|---|
| 292 | d[i] = c[i+1]*mult ;
|
|---|
| 293 | c[i] = cof*mult ;
|
|---|
| 294 | }
|
|---|
| 295 | y += (deltaY = (2*k < (fNumber - j - 1) ? c[k+1] : d[k--] )) ;
|
|---|
| 296 | }
|
|---|
| 297 | delete[] c ;
|
|---|
| 298 | delete[] d ;
|
|---|
| 299 |
|
|---|
| 300 | return y ;
|
|---|
| 301 | }
|
|---|
| 302 |
|
|---|
| 303 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 304 | //
|
|---|
| 305 | // Cubic spline interpolation in point pX for function given by the table:
|
|---|
| 306 | // fArgument, fFunction. The constructor, which creates fSecondDerivative,
|
|---|
| 307 | // must be called before. The function works optimal, if sequential calls
|
|---|
| 308 | // are in random values of pX.
|
|---|
| 309 |
|
|---|
| 310 | G4double
|
|---|
| 311 | G4DataInterpolation::CubicSplineInterpolation(G4double pX) const
|
|---|
| 312 | {
|
|---|
| 313 | G4int kLow=0, kHigh=fNumber-1, k=0 ;
|
|---|
| 314 |
|
|---|
| 315 | // Searching in the table by means of bisection method.
|
|---|
| 316 | // fArgument must be monotonic, either increasing or decreasing
|
|---|
| 317 |
|
|---|
| 318 | while((kHigh - kLow) > 1)
|
|---|
| 319 | {
|
|---|
| 320 | k = (kHigh + kLow) >> 1 ; // compute midpoint 'bisection'
|
|---|
| 321 | if(fArgument[k] > pX)
|
|---|
| 322 | {
|
|---|
| 323 | kHigh = k ;
|
|---|
| 324 | }
|
|---|
| 325 | else
|
|---|
| 326 | {
|
|---|
| 327 | kLow = k ;
|
|---|
| 328 | }
|
|---|
| 329 | } // kLow and kHigh now bracket the input value of pX
|
|---|
| 330 | G4double deltaHL = fArgument[kHigh] - fArgument[kLow] ;
|
|---|
| 331 | if (!(deltaHL != 0.0))
|
|---|
| 332 | {
|
|---|
| 333 | G4Exception("G4DataInterpolation::CubicSplineInterpolation()",
|
|---|
| 334 | "Error", FatalException, "Bad fArgument input !") ;
|
|---|
| 335 | }
|
|---|
| 336 | G4double a = (fArgument[kHigh] - pX)/deltaHL ;
|
|---|
| 337 | G4double b = (pX - fArgument[kLow])/deltaHL ;
|
|---|
| 338 |
|
|---|
| 339 | // Final evaluation of cubic spline polynomial for return
|
|---|
| 340 |
|
|---|
| 341 | return a*fFunction[kLow] + b*fFunction[kHigh] +
|
|---|
| 342 | ((a*a*a - a)*fSecondDerivative[kLow] +
|
|---|
| 343 | (b*b*b - b)*fSecondDerivative[kHigh])*deltaHL*deltaHL/6.0 ;
|
|---|
| 344 | }
|
|---|
| 345 |
|
|---|
| 346 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 347 | //
|
|---|
| 348 | // Return cubic spline interpolation in the point pX which is located between
|
|---|
| 349 | // fArgument[index] and fArgument[index+1]. It is usually called in sequence
|
|---|
| 350 | // of known from external analysis values of index.
|
|---|
| 351 |
|
|---|
| 352 | G4double
|
|---|
| 353 | G4DataInterpolation::FastCubicSpline(G4double pX,
|
|---|
| 354 | G4int index) const
|
|---|
| 355 | {
|
|---|
| 356 | G4double delta = fArgument[index+1] - fArgument[index] ;
|
|---|
| 357 | if (!(delta != 0.0))
|
|---|
| 358 | {
|
|---|
| 359 | G4Exception("G4DataInterpolation::FastCubicSpline()",
|
|---|
| 360 | "Error", FatalException, "Bad fArgument input !") ;
|
|---|
| 361 | }
|
|---|
| 362 | G4double a = (fArgument[index+1] - pX)/delta ;
|
|---|
| 363 | G4double b = (pX - fArgument[index])/delta ;
|
|---|
| 364 |
|
|---|
| 365 | // Final evaluation of cubic spline polynomial for return
|
|---|
| 366 |
|
|---|
| 367 | return a*fFunction[index] + b*fFunction[index+1] +
|
|---|
| 368 | ((a*a*a - a)*fSecondDerivative[index] +
|
|---|
| 369 | (b*b*b - b)*fSecondDerivative[index+1])*delta*delta/6.0 ;
|
|---|
| 370 | }
|
|---|
| 371 |
|
|---|
| 372 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 373 | //
|
|---|
| 374 | // Given argument pX, returns index k, so that pX bracketed by fArgument[k]
|
|---|
| 375 | // and fArgument[k+1]
|
|---|
| 376 |
|
|---|
| 377 | G4int
|
|---|
| 378 | G4DataInterpolation::LocateArgument(G4double pX) const
|
|---|
| 379 | {
|
|---|
| 380 | G4int kLow=-1, kHigh=fNumber, k=0 ;
|
|---|
| 381 | G4bool ascend=(fArgument[fNumber-1] >= fArgument[0]) ;
|
|---|
| 382 | while((kHigh - kLow) > 1)
|
|---|
| 383 | {
|
|---|
| 384 | k = (kHigh + kLow) >> 1 ; // compute midpoint 'bisection'
|
|---|
| 385 | if( (pX >= fArgument[k]) == ascend)
|
|---|
| 386 | {
|
|---|
| 387 | kLow = k ;
|
|---|
| 388 | }
|
|---|
| 389 | else
|
|---|
| 390 | {
|
|---|
| 391 | kHigh = k ;
|
|---|
| 392 | }
|
|---|
| 393 | }
|
|---|
| 394 | if (!(pX != fArgument[0]))
|
|---|
| 395 | {
|
|---|
| 396 | return 1 ;
|
|---|
| 397 | }
|
|---|
| 398 | else if (!(pX != fArgument[fNumber-1]))
|
|---|
| 399 | {
|
|---|
| 400 | return fNumber - 2 ;
|
|---|
| 401 | }
|
|---|
| 402 | else return kLow ;
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 406 | //
|
|---|
| 407 | // Given a value pX, returns a value 'index' such that pX is between
|
|---|
| 408 | // fArgument[index] and fArgument[index+1]. fArgument MUST BE MONOTONIC,
|
|---|
| 409 | // either increasing or decreasing. If index = -1 or fNumber, this indicates
|
|---|
| 410 | // that pX is out of range. The value index on input is taken as the initial
|
|---|
| 411 | // approximation for index on output.
|
|---|
| 412 |
|
|---|
| 413 | void
|
|---|
| 414 | G4DataInterpolation::CorrelatedSearch( G4double pX,
|
|---|
| 415 | G4int& index ) const
|
|---|
| 416 | {
|
|---|
| 417 | G4int kHigh=0, k=0, Increment=0 ;
|
|---|
| 418 | // ascend = true for ascending order of table, false otherwise
|
|---|
| 419 | G4bool ascend = (fArgument[fNumber-1] >= fArgument[0]) ;
|
|---|
| 420 | if(index < 0 || index > fNumber-1)
|
|---|
| 421 | {
|
|---|
| 422 | index = -1 ;
|
|---|
| 423 | kHigh = fNumber ;
|
|---|
| 424 | }
|
|---|
| 425 | else
|
|---|
| 426 | {
|
|---|
| 427 | Increment = 1 ; // What value would be the best ?
|
|---|
| 428 | if((pX >= fArgument[index]) == ascend)
|
|---|
| 429 | {
|
|---|
| 430 | if(index == fNumber -1)
|
|---|
| 431 | {
|
|---|
| 432 | index = fNumber ;
|
|---|
| 433 | return ;
|
|---|
| 434 | }
|
|---|
| 435 | kHigh = index + 1 ;
|
|---|
| 436 | while((pX >= fArgument[kHigh]) == ascend)
|
|---|
| 437 | {
|
|---|
| 438 | index = kHigh ;
|
|---|
| 439 | Increment += Increment ; // double the Increment
|
|---|
| 440 | kHigh = index + Increment ;
|
|---|
| 441 | if(kHigh > (fNumber - 1))
|
|---|
| 442 | {
|
|---|
| 443 | kHigh = fNumber ;
|
|---|
| 444 | break ;
|
|---|
| 445 | }
|
|---|
| 446 | }
|
|---|
| 447 | }
|
|---|
| 448 | else
|
|---|
| 449 | {
|
|---|
| 450 | if(index == 0)
|
|---|
| 451 | {
|
|---|
| 452 | index = -1 ;
|
|---|
| 453 | return ;
|
|---|
| 454 | }
|
|---|
| 455 | kHigh = index-- ;
|
|---|
| 456 | while((pX < fArgument[index]) == ascend)
|
|---|
| 457 | {
|
|---|
| 458 | kHigh = index ;
|
|---|
| 459 | Increment <<= 1 ; // double the Increment
|
|---|
| 460 | if(Increment >= kHigh)
|
|---|
| 461 | {
|
|---|
| 462 | index = -1 ;
|
|---|
| 463 | break ;
|
|---|
| 464 | }
|
|---|
| 465 | else
|
|---|
| 466 | {
|
|---|
| 467 | index = kHigh - Increment ;
|
|---|
| 468 | }
|
|---|
| 469 | }
|
|---|
| 470 | } // Value bracketed
|
|---|
| 471 | }
|
|---|
| 472 | // final bisection searching
|
|---|
| 473 |
|
|---|
| 474 | while((kHigh - index) != 1)
|
|---|
| 475 | {
|
|---|
| 476 | k = (kHigh + index) >> 1 ;
|
|---|
| 477 | if((pX >= fArgument[k]) == ascend)
|
|---|
| 478 | {
|
|---|
| 479 | index = k ;
|
|---|
| 480 | }
|
|---|
| 481 | else
|
|---|
| 482 | {
|
|---|
| 483 | kHigh = k ;
|
|---|
| 484 | }
|
|---|
| 485 | }
|
|---|
| 486 | if (!(pX != fArgument[fNumber-1]))
|
|---|
| 487 | {
|
|---|
| 488 | index = fNumber - 2 ;
|
|---|
| 489 | }
|
|---|
| 490 | if (!(pX != fArgument[0]))
|
|---|
| 491 | {
|
|---|
| 492 | index = 0 ;
|
|---|
| 493 | }
|
|---|
| 494 | return ;
|
|---|
| 495 | }
|
|---|
| 496 |
|
|---|
| 497 | //
|
|---|
| 498 | //
|
|---|
| 499 | ////////////////////////////////////////////////////////////////////////////
|
|---|