source: trunk/source/global/HEPNumerics/src/G4GaussJacobiQ.cc@ 1340

Last change on this file since 1340 was 1337, checked in by garnier, 15 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 6.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4GaussJacobiQ.cc,v 1.8 2007/11/13 17:35:06 gcosmo Exp $
28// GEANT4 tag $Name: geant4-09-04-beta-01 $
29//
30#include "G4GaussJacobiQ.hh"
31
32
33// -------------------------------------------------------------
34//
35// Constructor for Gauss-Jacobi integration method.
36//
37
38G4GaussJacobiQ::G4GaussJacobiQ( function pFunction,
39 G4double alpha,
40 G4double beta,
41 G4int nJacobi )
42 : G4VGaussianQuadrature(pFunction)
43
44{
45 const G4double tolerance = 1.0e-12 ;
46 const G4double maxNumber = 12 ;
47 G4int i=1, k=1 ;
48 G4double root=0.;
49 G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
50 root1=0.0, root2=0.0, root3=0.0 ;
51 G4double a=0.0, b=0.0, c=0.0,
52 newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
53 temp=0.0, rootTemp=0.0 ;
54
55 fNumber = nJacobi ;
56 fAbscissa = new G4double[fNumber] ;
57 fWeight = new G4double[fNumber] ;
58
59 for (i=1;i<=nJacobi;i++)
60 {
61 if (i == 1)
62 {
63 alphaReduced = alpha/nJacobi ;
64 betaReduced = beta/nJacobi ;
65 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
66 0.767999*alphaReduced/nJacobi) ;
67 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
68 + 0.451998*alphaReduced*alphaReduced
69 + 0.83001*alphaReduced*betaReduced ;
70 root = 1.0-root1/root2 ;
71 }
72 else if (i == 2)
73 {
74 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ;
75 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
76 root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
77 root -= (1.0-root)*root1*root2*root3 ;
78 }
79 else if (i == 3)
80 {
81 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ;
82 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
83 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
84 root -= (fAbscissa[0]-root)*root1*root2*root3 ;
85 }
86 else if (i == nJacobi-1)
87 {
88 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
89 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
90 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ;
91 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ;
92 }
93 else if (i == nJacobi)
94 {
95 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
96 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
97 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ;
98 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ;
99 }
100 else
101 {
102 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ;
103 }
104 alphaBeta = alpha + beta ;
105 for (k=1;k<=maxNumber;k++)
106 {
107 temp = 2.0 + alphaBeta ;
108 newton1 = (alpha-beta+temp*root)/2.0 ;
109 newton2 = 1.0 ;
110 for (G4int j=2;j<=nJacobi;j++)
111 {
112 newton3 = newton2 ;
113 newton2 = newton1 ;
114 temp = 2*j+alphaBeta ;
115 a = 2*j*(j+alphaBeta)*(temp-2.0) ;
116 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
117 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ;
118 newton1 = (b*newton2-c*newton3)/a ;
119 }
120 newton0 = (nJacobi*(alpha - beta - temp*root)*newton1 +
121 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
122 (temp*(1.0 - root*root)) ;
123 rootTemp = root ;
124 root = rootTemp - newton1/newton0 ;
125 if (std::fabs(root-rootTemp) <= tolerance)
126 {
127 break ;
128 }
129 }
130 if (k > maxNumber)
131 {
132 G4Exception("G4GaussJacobiQ::G4GaussJacobiQ()", "OutOfRange",
133 FatalException, "Too many iterations in constructor.") ;
134 }
135 fAbscissa[i-1] = root ;
136 fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) +
137 GammaLogarithm((G4double)(beta+nJacobi)) -
138 GammaLogarithm((G4double)(nJacobi+1.0)) -
139 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0)))
140 *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
141 }
142}
143
144
145// ----------------------------------------------------------
146//
147// Gauss-Jacobi method for integration of
148// ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
149// from minus unit to plus unit .
150
151
152G4double
153G4GaussJacobiQ::Integral() const
154{
155 G4double integral = 0.0 ;
156 for(G4int i=0;i<fNumber;i++)
157 {
158 integral += fWeight[i]*fFunction(fAbscissa[i]) ;
159 }
160 return integral ;
161}
162
Note: See TracBrowser for help on using the repository browser.