| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4GaussJacobiQ.cc,v 1.8 2007/11/13 17:35:06 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | #include "G4GaussJacobiQ.hh"
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 | // -------------------------------------------------------------
|
|---|
| 34 | //
|
|---|
| 35 | // Constructor for Gauss-Jacobi integration method.
|
|---|
| 36 | //
|
|---|
| 37 |
|
|---|
| 38 | G4GaussJacobiQ::G4GaussJacobiQ( function pFunction,
|
|---|
| 39 | G4double alpha,
|
|---|
| 40 | G4double beta,
|
|---|
| 41 | G4int nJacobi )
|
|---|
| 42 | : G4VGaussianQuadrature(pFunction)
|
|---|
| 43 |
|
|---|
| 44 | {
|
|---|
| 45 | const G4double tolerance = 1.0e-12 ;
|
|---|
| 46 | const G4double maxNumber = 12 ;
|
|---|
| 47 | G4int i=1, k=1 ;
|
|---|
| 48 | G4double root=0.;
|
|---|
| 49 | G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
|
|---|
| 50 | root1=0.0, root2=0.0, root3=0.0 ;
|
|---|
| 51 | G4double a=0.0, b=0.0, c=0.0,
|
|---|
| 52 | newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
|
|---|
| 53 | temp=0.0, rootTemp=0.0 ;
|
|---|
| 54 |
|
|---|
| 55 | fNumber = nJacobi ;
|
|---|
| 56 | fAbscissa = new G4double[fNumber] ;
|
|---|
| 57 | fWeight = new G4double[fNumber] ;
|
|---|
| 58 |
|
|---|
| 59 | for (i=1;i<=nJacobi;i++)
|
|---|
| 60 | {
|
|---|
| 61 | if (i == 1)
|
|---|
| 62 | {
|
|---|
| 63 | alphaReduced = alpha/nJacobi ;
|
|---|
| 64 | betaReduced = beta/nJacobi ;
|
|---|
| 65 | root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
|
|---|
| 66 | 0.767999*alphaReduced/nJacobi) ;
|
|---|
| 67 | root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
|
|---|
| 68 | + 0.451998*alphaReduced*alphaReduced
|
|---|
| 69 | + 0.83001*alphaReduced*betaReduced ;
|
|---|
| 70 | root = 1.0-root1/root2 ;
|
|---|
| 71 | }
|
|---|
| 72 | else if (i == 2)
|
|---|
| 73 | {
|
|---|
| 74 | root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ;
|
|---|
| 75 | root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
|
|---|
| 76 | root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
|
|---|
| 77 | root -= (1.0-root)*root1*root2*root3 ;
|
|---|
| 78 | }
|
|---|
| 79 | else if (i == 3)
|
|---|
| 80 | {
|
|---|
| 81 | root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ;
|
|---|
| 82 | root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
|
|---|
| 83 | root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
|
|---|
| 84 | root -= (fAbscissa[0]-root)*root1*root2*root3 ;
|
|---|
| 85 | }
|
|---|
| 86 | else if (i == nJacobi-1)
|
|---|
| 87 | {
|
|---|
| 88 | root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
|
|---|
| 89 | root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
|
|---|
| 90 | root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ;
|
|---|
| 91 | root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ;
|
|---|
| 92 | }
|
|---|
| 93 | else if (i == nJacobi)
|
|---|
| 94 | {
|
|---|
| 95 | root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
|
|---|
| 96 | root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
|
|---|
| 97 | root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ;
|
|---|
| 98 | root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ;
|
|---|
| 99 | }
|
|---|
| 100 | else
|
|---|
| 101 | {
|
|---|
| 102 | root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ;
|
|---|
| 103 | }
|
|---|
| 104 | alphaBeta = alpha + beta ;
|
|---|
| 105 | for (k=1;k<=maxNumber;k++)
|
|---|
| 106 | {
|
|---|
| 107 | temp = 2.0 + alphaBeta ;
|
|---|
| 108 | newton1 = (alpha-beta+temp*root)/2.0 ;
|
|---|
| 109 | newton2 = 1.0 ;
|
|---|
| 110 | for (G4int j=2;j<=nJacobi;j++)
|
|---|
| 111 | {
|
|---|
| 112 | newton3 = newton2 ;
|
|---|
| 113 | newton2 = newton1 ;
|
|---|
| 114 | temp = 2*j+alphaBeta ;
|
|---|
| 115 | a = 2*j*(j+alphaBeta)*(temp-2.0) ;
|
|---|
| 116 | b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
|
|---|
| 117 | c = 2.0*(j-1+alpha)*(j-1+beta)*temp ;
|
|---|
| 118 | newton1 = (b*newton2-c*newton3)/a ;
|
|---|
| 119 | }
|
|---|
| 120 | newton0 = (nJacobi*(alpha - beta - temp*root)*newton1 +
|
|---|
| 121 | 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
|
|---|
| 122 | (temp*(1.0 - root*root)) ;
|
|---|
| 123 | rootTemp = root ;
|
|---|
| 124 | root = rootTemp - newton1/newton0 ;
|
|---|
| 125 | if (std::fabs(root-rootTemp) <= tolerance)
|
|---|
| 126 | {
|
|---|
| 127 | break ;
|
|---|
| 128 | }
|
|---|
| 129 | }
|
|---|
| 130 | if (k > maxNumber)
|
|---|
| 131 | {
|
|---|
| 132 | G4Exception("G4GaussJacobiQ::G4GaussJacobiQ()", "OutOfRange",
|
|---|
| 133 | FatalException, "Too many iterations in constructor.") ;
|
|---|
| 134 | }
|
|---|
| 135 | fAbscissa[i-1] = root ;
|
|---|
| 136 | fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) +
|
|---|
| 137 | GammaLogarithm((G4double)(beta+nJacobi)) -
|
|---|
| 138 | GammaLogarithm((G4double)(nJacobi+1.0)) -
|
|---|
| 139 | GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0)))
|
|---|
| 140 | *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
|
|---|
| 141 | }
|
|---|
| 142 | }
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | // ----------------------------------------------------------
|
|---|
| 146 | //
|
|---|
| 147 | // Gauss-Jacobi method for integration of
|
|---|
| 148 | // ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
|
|---|
| 149 | // from minus unit to plus unit .
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 | G4double
|
|---|
| 153 | G4GaussJacobiQ::Integral() const
|
|---|
| 154 | {
|
|---|
| 155 | G4double integral = 0.0 ;
|
|---|
| 156 | for(G4int i=0;i<fNumber;i++)
|
|---|
| 157 | {
|
|---|
| 158 | integral += fWeight[i]*fFunction(fAbscissa[i]) ;
|
|---|
| 159 | }
|
|---|
| 160 | return integral ;
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|