| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4GaussLaguerreQ.cc,v 1.8 2007/11/13 17:35:06 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: HEAD $
|
|---|
| 29 | //
|
|---|
| 30 | #include "G4GaussLaguerreQ.hh"
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 |
|
|---|
| 34 | // ------------------------------------------------------------
|
|---|
| 35 | //
|
|---|
| 36 | // Constructor for Gauss-Laguerre quadrature method: integral from zero to
|
|---|
| 37 | // infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
|
|---|
| 38 | // The value of nLaguerre sets the accuracy.
|
|---|
| 39 | // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and
|
|---|
| 40 | // fWeight[0,..,nLaguerre-1] .
|
|---|
| 41 | //
|
|---|
| 42 |
|
|---|
| 43 | G4GaussLaguerreQ::G4GaussLaguerreQ( function pFunction,
|
|---|
| 44 | G4double alpha,
|
|---|
| 45 | G4int nLaguerre )
|
|---|
| 46 | : G4VGaussianQuadrature(pFunction)
|
|---|
| 47 | {
|
|---|
| 48 | const G4double tolerance = 1.0e-10 ;
|
|---|
| 49 | const G4int maxNumber = 12 ;
|
|---|
| 50 | G4int i=1, k=1 ;
|
|---|
| 51 | G4double newton0=0.0, newton1=0.0,
|
|---|
| 52 | temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0, cofi=0.0 ;
|
|---|
| 53 |
|
|---|
| 54 | fNumber = nLaguerre ;
|
|---|
| 55 | fAbscissa = new G4double[fNumber] ;
|
|---|
| 56 | fWeight = new G4double[fNumber] ;
|
|---|
| 57 |
|
|---|
| 58 | for(i=1;i<=fNumber;i++) // Loop over the desired roots
|
|---|
| 59 | {
|
|---|
| 60 | if(i == 1)
|
|---|
| 61 | {
|
|---|
| 62 | newton0 = (1.0 + alpha)*(3.0 + 0.92*alpha)
|
|---|
| 63 | / (1.0 + 2.4*fNumber + 1.8*alpha) ;
|
|---|
| 64 | }
|
|---|
| 65 | else if(i == 2)
|
|---|
| 66 | {
|
|---|
| 67 | newton0 += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ;
|
|---|
| 68 | }
|
|---|
| 69 | else
|
|---|
| 70 | {
|
|---|
| 71 | cofi = i - 2 ;
|
|---|
| 72 | newton0 += ((1.0+2.55*cofi)/(1.9*cofi)
|
|---|
| 73 | + 1.26*cofi*alpha/(1.0+3.5*cofi))
|
|---|
| 74 | * (newton0 - fAbscissa[i-3])/(1.0 + 0.3*alpha) ;
|
|---|
| 75 | }
|
|---|
| 76 | for(k=1;k<=maxNumber;k++)
|
|---|
| 77 | {
|
|---|
| 78 | temp1 = 1.0 ;
|
|---|
| 79 | temp2 = 0.0 ;
|
|---|
| 80 | for(G4int j=1;j<=fNumber;j++)
|
|---|
| 81 | {
|
|---|
| 82 | temp3 = temp2 ;
|
|---|
| 83 | temp2 = temp1 ;
|
|---|
| 84 | temp1 = ((2*j - 1 + alpha - newton0)*temp2
|
|---|
| 85 | - (j - 1 + alpha)*temp3)/j ;
|
|---|
| 86 | }
|
|---|
| 87 | temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton0 ;
|
|---|
| 88 | newton1 = newton0 ;
|
|---|
| 89 | newton0 = newton1 - temp1/temp ;
|
|---|
| 90 | if(std::fabs(newton0 - newton1) <= tolerance)
|
|---|
| 91 | {
|
|---|
| 92 | break ;
|
|---|
| 93 | }
|
|---|
| 94 | }
|
|---|
| 95 | if(k > maxNumber)
|
|---|
| 96 | {
|
|---|
| 97 | G4Exception("G4GaussLaguerreQ::G4GaussLaguerreQ()",
|
|---|
| 98 | "OutOfRange", FatalException,
|
|---|
| 99 | "Too many iterations in Gauss-Laguerre constructor") ;
|
|---|
| 100 | }
|
|---|
| 101 |
|
|---|
| 102 | fAbscissa[i-1] = newton0 ;
|
|---|
| 103 | fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber)
|
|---|
| 104 | - GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ;
|
|---|
| 105 | }
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | // -----------------------------------------------------------------
|
|---|
| 109 | //
|
|---|
| 110 | // Gauss-Laguerre method for integration of
|
|---|
| 111 | // std::pow(x,alpha)*std::exp(-x)*pFunction(x)
|
|---|
| 112 | // from zero up to infinity. pFunction is evaluated in fNumber points
|
|---|
| 113 | // for which fAbscissa[i] and fWeight[i] arrays were created in
|
|---|
| 114 | // G4VGaussianQuadrature(double,int) constructor
|
|---|
| 115 |
|
|---|
| 116 | G4double
|
|---|
| 117 | G4GaussLaguerreQ::Integral() const
|
|---|
| 118 | {
|
|---|
| 119 | G4double integral = 0.0 ;
|
|---|
| 120 | for(G4int i=0;i<fNumber;i++)
|
|---|
| 121 | {
|
|---|
| 122 | integral += fWeight[i]*fFunction(fAbscissa[i]) ;
|
|---|
| 123 | }
|
|---|
| 124 | return integral ;
|
|---|
| 125 | }
|
|---|