| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4GaussLegendreQ.cc,v 1.8 2007/11/13 17:35:06 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: HEAD $
|
|---|
| 29 | //
|
|---|
| 30 | #include "G4GaussLegendreQ.hh"
|
|---|
| 31 |
|
|---|
| 32 | G4GaussLegendreQ::G4GaussLegendreQ( function pFunction )
|
|---|
| 33 | : G4VGaussianQuadrature(pFunction)
|
|---|
| 34 | {
|
|---|
| 35 | }
|
|---|
| 36 |
|
|---|
| 37 | // --------------------------------------------------------------------------
|
|---|
| 38 | //
|
|---|
| 39 | // Constructor for GaussLegendre quadrature method. The value nLegendre sets
|
|---|
| 40 | // the accuracy required, i.e the number of points where the function pFunction
|
|---|
| 41 | // will be evaluated during integration. The constructor creates the arrays for
|
|---|
| 42 | // abscissas and weights that are used in Gauss-Legendre quadrature method.
|
|---|
| 43 | // The values a and b are the limits of integration of the pFunction.
|
|---|
| 44 | // nLegendre MUST BE EVEN !!!
|
|---|
| 45 |
|
|---|
| 46 | G4GaussLegendreQ::G4GaussLegendreQ( function pFunction,
|
|---|
| 47 | G4int nLegendre )
|
|---|
| 48 | : G4VGaussianQuadrature(pFunction)
|
|---|
| 49 | {
|
|---|
| 50 | const G4double tolerance = 1.6e-10 ;
|
|---|
| 51 | G4int k = nLegendre ;
|
|---|
| 52 | fNumber = (nLegendre + 1)/2 ;
|
|---|
| 53 | if(2*fNumber != k)
|
|---|
| 54 | {
|
|---|
| 55 | G4Exception("G4GaussLegendreQ::G4GaussLegendreQ()", "InvalidCall",
|
|---|
| 56 | FatalException, "Invalid nLegendre argument !") ;
|
|---|
| 57 | }
|
|---|
| 58 | G4double newton0=0.0, newton1=0.0,
|
|---|
| 59 | temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0 ;
|
|---|
| 60 |
|
|---|
| 61 | fAbscissa = new G4double[fNumber] ;
|
|---|
| 62 | fWeight = new G4double[fNumber] ;
|
|---|
| 63 |
|
|---|
| 64 | for(G4int i=1;i<=fNumber;i++) // Loop over the desired roots
|
|---|
| 65 | {
|
|---|
| 66 | newton0 = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root
|
|---|
| 67 | do // approximation
|
|---|
| 68 | { // loop of Newton's method
|
|---|
| 69 | temp1 = 1.0 ;
|
|---|
| 70 | temp2 = 0.0 ;
|
|---|
| 71 | for(G4int j=1;j<=k;j++)
|
|---|
| 72 | {
|
|---|
| 73 | temp3 = temp2 ;
|
|---|
| 74 | temp2 = temp1 ;
|
|---|
| 75 | temp1 = ((2.0*j - 1.0)*newton0*temp2 - (j - 1.0)*temp3)/j ;
|
|---|
| 76 | }
|
|---|
| 77 | temp = k*(newton0*temp1 - temp2)/(newton0*newton0 - 1.0) ;
|
|---|
| 78 | newton1 = newton0 ;
|
|---|
| 79 | newton0 = newton1 - temp1/temp ; // Newton's method
|
|---|
| 80 | }
|
|---|
| 81 | while(std::fabs(newton0 - newton1) > tolerance) ;
|
|---|
| 82 |
|
|---|
| 83 | fAbscissa[fNumber-i] = newton0 ;
|
|---|
| 84 | fWeight[fNumber-i] = 2.0/((1.0 - newton0*newton0)*temp*temp) ;
|
|---|
| 85 | }
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | // --------------------------------------------------------------------------
|
|---|
| 89 | //
|
|---|
| 90 | // Returns the integral of the function to be pointed by fFunction between a
|
|---|
| 91 | // and b, by 2*fNumber point Gauss-Legendre integration: the function is
|
|---|
| 92 | // evaluated exactly 2*fNumber times at interior points in the range of
|
|---|
| 93 | // integration. Since the weights and abscissas are, in this case, symmetric
|
|---|
| 94 | // around the midpoint of the range of integration, there are actually only
|
|---|
| 95 | // fNumber distinct values of each.
|
|---|
| 96 |
|
|---|
| 97 | G4double
|
|---|
| 98 | G4GaussLegendreQ::Integral(G4double a, G4double b) const
|
|---|
| 99 | {
|
|---|
| 100 | G4double xMean = 0.5*(a + b),
|
|---|
| 101 | xDiff = 0.5*(b - a),
|
|---|
| 102 | integral = 0.0, dx = 0.0 ;
|
|---|
| 103 | for(G4int i=0;i<fNumber;i++)
|
|---|
| 104 | {
|
|---|
| 105 | dx = xDiff*fAbscissa[i] ;
|
|---|
| 106 | integral += fWeight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
|
|---|
| 107 | }
|
|---|
| 108 | return integral *= xDiff ;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | // --------------------------------------------------------------------------
|
|---|
| 112 | //
|
|---|
| 113 | // Returns the integral of the function to be pointed by fFunction between a
|
|---|
| 114 | // and b, by ten point Gauss-Legendre integration: the function is evaluated
|
|---|
| 115 | // exactly ten times at interior points in the range of integration. Since the
|
|---|
| 116 | // weights and abscissas are, in this case, symmetric around the midpoint of
|
|---|
| 117 | // the range of integration, there are actually only five distinct values of
|
|---|
| 118 | // each.
|
|---|
| 119 |
|
|---|
| 120 | G4double
|
|---|
| 121 | G4GaussLegendreQ::QuickIntegral(G4double a, G4double b) const
|
|---|
| 122 | {
|
|---|
| 123 | // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
|
|---|
| 124 |
|
|---|
| 125 | static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
|
|---|
| 126 | 0.679409568299024, 0.865063366688985,
|
|---|
| 127 | 0.973906528517172 } ;
|
|---|
| 128 |
|
|---|
| 129 | static G4double weight[] = { 0.295524224714753, 0.269266719309996,
|
|---|
| 130 | 0.219086362515982, 0.149451349150581,
|
|---|
| 131 | 0.066671344308688 } ;
|
|---|
| 132 | G4double xMean = 0.5*(a + b),
|
|---|
| 133 | xDiff = 0.5*(b - a),
|
|---|
| 134 | integral = 0.0, dx = 0.0 ;
|
|---|
| 135 | for(G4int i=0;i<5;i++)
|
|---|
| 136 | {
|
|---|
| 137 | dx = xDiff*abscissa[i] ;
|
|---|
| 138 | integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
|
|---|
| 139 | }
|
|---|
| 140 | return integral *= xDiff ;
|
|---|
| 141 | }
|
|---|
| 142 |
|
|---|
| 143 | // -------------------------------------------------------------------------
|
|---|
| 144 | //
|
|---|
| 145 | // Returns the integral of the function to be pointed by fFunction between a
|
|---|
| 146 | // and b, by 96 point Gauss-Legendre integration: the function is evaluated
|
|---|
| 147 | // exactly ten times at interior points in the range of integration. Since the
|
|---|
| 148 | // weights and abscissas are, in this case, symmetric around the midpoint of
|
|---|
| 149 | // the range of integration, there are actually only five distinct values of
|
|---|
| 150 | // each.
|
|---|
| 151 |
|
|---|
| 152 | G4double
|
|---|
| 153 | G4GaussLegendreQ::AccurateIntegral(G4double a, G4double b) const
|
|---|
| 154 | {
|
|---|
| 155 | // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
|
|---|
| 156 |
|
|---|
| 157 | static
|
|---|
| 158 | G4double abscissa[] = {
|
|---|
| 159 | 0.016276744849602969579, 0.048812985136049731112,
|
|---|
| 160 | 0.081297495464425558994, 0.113695850110665920911,
|
|---|
| 161 | 0.145973714654896941989, 0.178096882367618602759, // 6
|
|---|
| 162 |
|
|---|
| 163 | 0.210031310460567203603, 0.241743156163840012328,
|
|---|
| 164 | 0.273198812591049141487, 0.304364944354496353024,
|
|---|
| 165 | 0.335208522892625422616, 0.365696861472313635031, // 12
|
|---|
| 166 |
|
|---|
| 167 | 0.395797649828908603285, 0.425478988407300545365,
|
|---|
| 168 | 0.454709422167743008636, 0.483457973920596359768,
|
|---|
| 169 | 0.511694177154667673586, 0.539388108324357436227, // 18
|
|---|
| 170 |
|
|---|
| 171 | 0.566510418561397168404, 0.593032364777572080684,
|
|---|
| 172 | 0.618925840125468570386, 0.644163403784967106798,
|
|---|
| 173 | 0.668718310043916153953, 0.692564536642171561344, // 24
|
|---|
| 174 |
|
|---|
| 175 | 0.715676812348967626225, 0.738030643744400132851,
|
|---|
| 176 | 0.759602341176647498703, 0.780369043867433217604,
|
|---|
| 177 | 0.800308744139140817229, 0.819400310737931675539, // 30
|
|---|
| 178 |
|
|---|
| 179 | 0.837623511228187121494, 0.854959033434601455463,
|
|---|
| 180 | 0.871388505909296502874, 0.886894517402420416057,
|
|---|
| 181 | 0.901460635315852341319, 0.915071423120898074206, // 36
|
|---|
| 182 |
|
|---|
| 183 | 0.927712456722308690965, 0.939370339752755216932,
|
|---|
| 184 | 0.950032717784437635756, 0.959688291448742539300,
|
|---|
| 185 | 0.968326828463264212174, 0.975939174585136466453, // 42
|
|---|
| 186 |
|
|---|
| 187 | 0.982517263563014677447, 0.988054126329623799481,
|
|---|
| 188 | 0.992543900323762624572, 0.995981842987209290650,
|
|---|
| 189 | 0.998364375863181677724, 0.999689503883230766828 // 48
|
|---|
| 190 | } ;
|
|---|
| 191 |
|
|---|
| 192 | static
|
|---|
| 193 | G4double weight[] = {
|
|---|
| 194 | 0.032550614492363166242, 0.032516118713868835987,
|
|---|
| 195 | 0.032447163714064269364, 0.032343822568575928429,
|
|---|
| 196 | 0.032206204794030250669, 0.032034456231992663218, // 6
|
|---|
| 197 |
|
|---|
| 198 | 0.031828758894411006535, 0.031589330770727168558,
|
|---|
| 199 | 0.031316425596862355813, 0.031010332586313837423,
|
|---|
| 200 | 0.030671376123669149014, 0.030299915420827593794, // 12
|
|---|
| 201 |
|
|---|
| 202 | 0.029896344136328385984, 0.029461089958167905970,
|
|---|
| 203 | 0.028994614150555236543, 0.028497411065085385646,
|
|---|
| 204 | 0.027970007616848334440, 0.027412962726029242823, // 18
|
|---|
| 205 |
|
|---|
| 206 | 0.026826866725591762198, 0.026212340735672413913,
|
|---|
| 207 | 0.025570036005349361499, 0.024900633222483610288,
|
|---|
| 208 | 0.024204841792364691282, 0.023483399085926219842, // 24
|
|---|
| 209 |
|
|---|
| 210 | 0.022737069658329374001, 0.021966644438744349195,
|
|---|
| 211 | 0.021172939892191298988, 0.020356797154333324595,
|
|---|
| 212 | 0.019519081140145022410, 0.018660679627411467385, // 30
|
|---|
| 213 |
|
|---|
| 214 | 0.017782502316045260838, 0.016885479864245172450,
|
|---|
| 215 | 0.015970562902562291381, 0.015038721026994938006,
|
|---|
| 216 | 0.014090941772314860916, 0.013128229566961572637, // 36
|
|---|
| 217 |
|
|---|
| 218 | 0.012151604671088319635, 0.011162102099838498591,
|
|---|
| 219 | 0.010160770535008415758, 0.009148671230783386633,
|
|---|
| 220 | 0.008126876925698759217, 0.007096470791153865269, // 42
|
|---|
| 221 |
|
|---|
| 222 | 0.006058545504235961683, 0.005014202742927517693,
|
|---|
| 223 | 0.003964554338444686674, 0.002910731817934946408,
|
|---|
| 224 | 0.001853960788946921732, 0.000796792065552012429 // 48
|
|---|
| 225 | } ;
|
|---|
| 226 | G4double xMean = 0.5*(a + b),
|
|---|
| 227 | xDiff = 0.5*(b - a),
|
|---|
| 228 | integral = 0.0, dx = 0.0 ;
|
|---|
| 229 | for(G4int i=0;i<48;i++)
|
|---|
| 230 | {
|
|---|
| 231 | dx = xDiff*abscissa[i] ;
|
|---|
| 232 | integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
|
|---|
| 233 | }
|
|---|
| 234 | return integral *= xDiff ;
|
|---|
| 235 | }
|
|---|