source: trunk/source/global/HEPNumerics/src/G4GaussLegendreQ.cc@ 1036

Last change on this file since 1036 was 850, checked in by garnier, 17 years ago

geant4.8.2 beta

File size: 10.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4GaussLegendreQ.cc,v 1.8 2007/11/13 17:35:06 gcosmo Exp $
28// GEANT4 tag $Name: HEAD $
29//
30#include "G4GaussLegendreQ.hh"
31
32G4GaussLegendreQ::G4GaussLegendreQ( function pFunction )
33 : G4VGaussianQuadrature(pFunction)
34{
35}
36
37// --------------------------------------------------------------------------
38//
39// Constructor for GaussLegendre quadrature method. The value nLegendre sets
40// the accuracy required, i.e the number of points where the function pFunction
41// will be evaluated during integration. The constructor creates the arrays for
42// abscissas and weights that are used in Gauss-Legendre quadrature method.
43// The values a and b are the limits of integration of the pFunction.
44// nLegendre MUST BE EVEN !!!
45
46G4GaussLegendreQ::G4GaussLegendreQ( function pFunction,
47 G4int nLegendre )
48 : G4VGaussianQuadrature(pFunction)
49{
50 const G4double tolerance = 1.6e-10 ;
51 G4int k = nLegendre ;
52 fNumber = (nLegendre + 1)/2 ;
53 if(2*fNumber != k)
54 {
55 G4Exception("G4GaussLegendreQ::G4GaussLegendreQ()", "InvalidCall",
56 FatalException, "Invalid nLegendre argument !") ;
57 }
58 G4double newton0=0.0, newton1=0.0,
59 temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0 ;
60
61 fAbscissa = new G4double[fNumber] ;
62 fWeight = new G4double[fNumber] ;
63
64 for(G4int i=1;i<=fNumber;i++) // Loop over the desired roots
65 {
66 newton0 = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root
67 do // approximation
68 { // loop of Newton's method
69 temp1 = 1.0 ;
70 temp2 = 0.0 ;
71 for(G4int j=1;j<=k;j++)
72 {
73 temp3 = temp2 ;
74 temp2 = temp1 ;
75 temp1 = ((2.0*j - 1.0)*newton0*temp2 - (j - 1.0)*temp3)/j ;
76 }
77 temp = k*(newton0*temp1 - temp2)/(newton0*newton0 - 1.0) ;
78 newton1 = newton0 ;
79 newton0 = newton1 - temp1/temp ; // Newton's method
80 }
81 while(std::fabs(newton0 - newton1) > tolerance) ;
82
83 fAbscissa[fNumber-i] = newton0 ;
84 fWeight[fNumber-i] = 2.0/((1.0 - newton0*newton0)*temp*temp) ;
85 }
86}
87
88// --------------------------------------------------------------------------
89//
90// Returns the integral of the function to be pointed by fFunction between a
91// and b, by 2*fNumber point Gauss-Legendre integration: the function is
92// evaluated exactly 2*fNumber times at interior points in the range of
93// integration. Since the weights and abscissas are, in this case, symmetric
94// around the midpoint of the range of integration, there are actually only
95// fNumber distinct values of each.
96
97G4double
98G4GaussLegendreQ::Integral(G4double a, G4double b) const
99{
100 G4double xMean = 0.5*(a + b),
101 xDiff = 0.5*(b - a),
102 integral = 0.0, dx = 0.0 ;
103 for(G4int i=0;i<fNumber;i++)
104 {
105 dx = xDiff*fAbscissa[i] ;
106 integral += fWeight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
107 }
108 return integral *= xDiff ;
109}
110
111// --------------------------------------------------------------------------
112//
113// Returns the integral of the function to be pointed by fFunction between a
114// and b, by ten point Gauss-Legendre integration: the function is evaluated
115// exactly ten times at interior points in the range of integration. Since the
116// weights and abscissas are, in this case, symmetric around the midpoint of
117// the range of integration, there are actually only five distinct values of
118// each.
119
120G4double
121 G4GaussLegendreQ::QuickIntegral(G4double a, G4double b) const
122{
123 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
124
125 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
126 0.679409568299024, 0.865063366688985,
127 0.973906528517172 } ;
128
129 static G4double weight[] = { 0.295524224714753, 0.269266719309996,
130 0.219086362515982, 0.149451349150581,
131 0.066671344308688 } ;
132 G4double xMean = 0.5*(a + b),
133 xDiff = 0.5*(b - a),
134 integral = 0.0, dx = 0.0 ;
135 for(G4int i=0;i<5;i++)
136 {
137 dx = xDiff*abscissa[i] ;
138 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
139 }
140 return integral *= xDiff ;
141}
142
143// -------------------------------------------------------------------------
144//
145// Returns the integral of the function to be pointed by fFunction between a
146// and b, by 96 point Gauss-Legendre integration: the function is evaluated
147// exactly ten times at interior points in the range of integration. Since the
148// weights and abscissas are, in this case, symmetric around the midpoint of
149// the range of integration, there are actually only five distinct values of
150// each.
151
152G4double
153 G4GaussLegendreQ::AccurateIntegral(G4double a, G4double b) const
154{
155 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
156
157 static
158 G4double abscissa[] = {
159 0.016276744849602969579, 0.048812985136049731112,
160 0.081297495464425558994, 0.113695850110665920911,
161 0.145973714654896941989, 0.178096882367618602759, // 6
162
163 0.210031310460567203603, 0.241743156163840012328,
164 0.273198812591049141487, 0.304364944354496353024,
165 0.335208522892625422616, 0.365696861472313635031, // 12
166
167 0.395797649828908603285, 0.425478988407300545365,
168 0.454709422167743008636, 0.483457973920596359768,
169 0.511694177154667673586, 0.539388108324357436227, // 18
170
171 0.566510418561397168404, 0.593032364777572080684,
172 0.618925840125468570386, 0.644163403784967106798,
173 0.668718310043916153953, 0.692564536642171561344, // 24
174
175 0.715676812348967626225, 0.738030643744400132851,
176 0.759602341176647498703, 0.780369043867433217604,
177 0.800308744139140817229, 0.819400310737931675539, // 30
178
179 0.837623511228187121494, 0.854959033434601455463,
180 0.871388505909296502874, 0.886894517402420416057,
181 0.901460635315852341319, 0.915071423120898074206, // 36
182
183 0.927712456722308690965, 0.939370339752755216932,
184 0.950032717784437635756, 0.959688291448742539300,
185 0.968326828463264212174, 0.975939174585136466453, // 42
186
187 0.982517263563014677447, 0.988054126329623799481,
188 0.992543900323762624572, 0.995981842987209290650,
189 0.998364375863181677724, 0.999689503883230766828 // 48
190 } ;
191
192 static
193 G4double weight[] = {
194 0.032550614492363166242, 0.032516118713868835987,
195 0.032447163714064269364, 0.032343822568575928429,
196 0.032206204794030250669, 0.032034456231992663218, // 6
197
198 0.031828758894411006535, 0.031589330770727168558,
199 0.031316425596862355813, 0.031010332586313837423,
200 0.030671376123669149014, 0.030299915420827593794, // 12
201
202 0.029896344136328385984, 0.029461089958167905970,
203 0.028994614150555236543, 0.028497411065085385646,
204 0.027970007616848334440, 0.027412962726029242823, // 18
205
206 0.026826866725591762198, 0.026212340735672413913,
207 0.025570036005349361499, 0.024900633222483610288,
208 0.024204841792364691282, 0.023483399085926219842, // 24
209
210 0.022737069658329374001, 0.021966644438744349195,
211 0.021172939892191298988, 0.020356797154333324595,
212 0.019519081140145022410, 0.018660679627411467385, // 30
213
214 0.017782502316045260838, 0.016885479864245172450,
215 0.015970562902562291381, 0.015038721026994938006,
216 0.014090941772314860916, 0.013128229566961572637, // 36
217
218 0.012151604671088319635, 0.011162102099838498591,
219 0.010160770535008415758, 0.009148671230783386633,
220 0.008126876925698759217, 0.007096470791153865269, // 42
221
222 0.006058545504235961683, 0.005014202742927517693,
223 0.003964554338444686674, 0.002910731817934946408,
224 0.001853960788946921732, 0.000796792065552012429 // 48
225 } ;
226 G4double xMean = 0.5*(a + b),
227 xDiff = 0.5*(b - a),
228 integral = 0.0, dx = 0.0 ;
229 for(G4int i=0;i<48;i++)
230 {
231 dx = xDiff*abscissa[i] ;
232 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
233 }
234 return integral *= xDiff ;
235}
Note: See TracBrowser for help on using the repository browser.