source: trunk/source/global/HEPNumerics/src/G4SimpleIntegration.cc@ 1109

Last change on this file since 1109 was 1058, checked in by garnier, 17 years ago

file release beta

File size: 5.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4SimpleIntegration.cc,v 1.7 2006/06/29 19:00:21 gunter Exp $
28// GEANT4 tag $Name: geant4-09-02-ref-02 $
29//
30// Implementation file for simple integration methods
31//
32
33#include "globals.hh"
34#include "G4SimpleIntegration.hh"
35
36
37G4int G4SimpleIntegration::fMaxDepth = 100 ;
38
39
40G4SimpleIntegration::G4SimpleIntegration( function pFunction )
41 : fFunction(pFunction),
42 fTolerance(.0001)
43{
44}
45
46G4SimpleIntegration::G4SimpleIntegration( function pFunction,
47 G4double pTolerance)
48 : fFunction(pFunction),
49 fTolerance(pTolerance)
50{
51}
52
53
54G4SimpleIntegration::~G4SimpleIntegration()
55{
56}
57
58 // Simple integration methods
59
60G4double
61G4SimpleIntegration::Trapezoidal(G4double xInitial,
62 G4double xFinal,
63 G4int iterationNumber )
64{
65 G4double Step = (xFinal - xInitial)/iterationNumber ;
66 G4double mean = (fFunction(xInitial) + fFunction(xFinal))*0.5 ;
67 G4double x = xInitial ;
68 for(G4int i=1;i<iterationNumber;i++)
69 {
70 x += Step ;
71 mean += fFunction(x) ;
72 }
73 return mean*Step ;
74}
75
76G4double
77G4SimpleIntegration::MidPoint(G4double xInitial,
78 G4double xFinal,
79 G4int iterationNumber )
80{
81 G4double Step = (xFinal - xInitial)/iterationNumber ;
82 G4double x = xInitial + 0.5*Step;
83 G4double mean = fFunction(x) ;
84 for(G4int i=1;i<iterationNumber;i++)
85 {
86 x += Step ;
87 mean += fFunction(x) ;
88 }
89 return mean*Step ;
90}
91
92G4double
93G4SimpleIntegration::Gauss(G4double xInitial,
94 G4double xFinal,
95 G4int iterationNumber )
96{
97 G4double x=0.;
98 static G4double root = 1.0/std::sqrt(3.0) ;
99 G4double Step = (xFinal - xInitial)/(2.0*iterationNumber) ;
100 G4double delta = Step*root ;
101 G4double mean = 0.0 ;
102 for(G4int i=0;i<iterationNumber;i++)
103 {
104 x = (2*i + 1)*Step ;
105 mean += (fFunction(x+delta) + fFunction(x-delta)) ;
106 }
107 return mean*Step ;
108}
109
110G4double
111G4SimpleIntegration::Simpson(G4double xInitial,
112 G4double xFinal,
113 G4int iterationNumber )
114{
115 G4double Step = (xFinal - xInitial)/iterationNumber ;
116 G4double x = xInitial ;
117 G4double xPlus = xInitial + 0.5*Step ;
118 G4double mean = (fFunction(xInitial) + fFunction(xFinal))*0.5 ;
119 G4double sum = fFunction(xPlus) ;
120 for(G4int i=1;i<iterationNumber;i++)
121 {
122 x += Step ;
123 xPlus += Step ;
124 mean += fFunction(x) ;
125 sum += fFunction(xPlus) ;
126 }
127 mean += 2.0*sum ;
128 return mean*Step/3.0 ;
129}
130
131
132
133 // Adaptive Gauss integration
134
135G4double
136G4SimpleIntegration::AdaptGaussIntegration( G4double xInitial,
137 G4double xFinal )
138{
139 G4int depth = 0 ;
140 G4double sum = 0.0 ;
141 AdaptGauss(xInitial,xFinal,sum,depth) ;
142 return sum ;
143}
144
145
146G4double
147G4SimpleIntegration::Gauss( G4double xInitial,
148 G4double xFinal )
149{
150 static G4double root = 1.0/std::sqrt(3.0) ;
151
152 G4double xMean = (xInitial + xFinal)/2.0 ;
153 G4double Step = (xFinal - xInitial)/2.0 ;
154 G4double delta = Step*root ;
155 G4double sum = (fFunction(xMean + delta) + fFunction(xMean - delta)) ;
156
157 return sum*Step ;
158}
159
160
161void
162G4SimpleIntegration::AdaptGauss( G4double xInitial,
163 G4double xFinal,
164 G4double& sum,
165 G4int& depth )
166{
167 if(depth >fMaxDepth)
168 {
169 G4Exception("G4SimpleIntegration::AdaptGauss()", "Error",
170 FatalException, "Function varies too rapidly !") ;
171 }
172 G4double xMean = (xInitial + xFinal)/2.0 ;
173 G4double leftHalf = Gauss(xInitial,xMean) ;
174 G4double rightHalf = Gauss(xMean,xFinal) ;
175 G4double full = Gauss(xInitial,xFinal) ;
176 if(std::fabs(leftHalf+rightHalf-full) < fTolerance)
177 {
178 sum += full ;
179 }
180 else
181 {
182 depth++ ;
183 AdaptGauss(xInitial,xMean,sum,depth) ;
184 AdaptGauss(xMean,xFinal,sum,depth) ;
185 }
186}
Note: See TracBrowser for help on using the repository browser.