| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4IntegratorTest.cc,v 1.10 2006/08/21 12:24:32 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // Test program for G4Integrator class. The function std::exp(-x)*std::cos(x) is
|
|---|
| 31 | // integrated between zero and two pi. The exact result is 0.499066278634
|
|---|
| 32 | //
|
|---|
| 33 | // History:
|
|---|
| 34 | //
|
|---|
| 35 | // 05.04.97 V.Grichine, first implementation
|
|---|
| 36 | // 04.09.99 V.Grichine, integration of member function from a class and main,
|
|---|
| 37 | // as well as integration of global scope functions
|
|---|
| 38 |
|
|---|
| 39 | #include "G4ios.hh"
|
|---|
| 40 | #include "globals.hh"
|
|---|
| 41 | #include "G4SimpleIntegration.hh"
|
|---|
| 42 | #include "G4Integrator.hh"
|
|---|
| 43 |
|
|---|
| 44 | G4double GlobalFunction( G4double x ){ return std::exp(-x)*std::cos(x) ; }
|
|---|
| 45 |
|
|---|
| 46 | G4double GlobalCos( G4double x ){ return std::cos(x) ; }
|
|---|
| 47 |
|
|---|
| 48 | G4double GlobalHermite(G4double x){ return x*x*std::cos(x) ; }
|
|---|
| 49 |
|
|---|
| 50 |
|
|---|
| 51 | G4double fY;
|
|---|
| 52 | G4int fN = 100;
|
|---|
| 53 |
|
|---|
| 54 | G4double X1 = -3.25/5.;
|
|---|
| 55 | G4double X2 = 3.25/5.;
|
|---|
| 56 |
|
|---|
| 57 | G4double Y1 = -7.5/5.;
|
|---|
| 58 | G4double Y2 = 7.5/5.;
|
|---|
| 59 |
|
|---|
| 60 | G4double Harp(G4double x)
|
|---|
| 61 | {
|
|---|
| 62 |
|
|---|
| 63 | G4double tmp = std::sqrt(1 + x*x + fY*fY);
|
|---|
| 64 | tmp *= 1 + x*x + fY*fY ;
|
|---|
| 65 | return 1/tmp;
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 |
|
|---|
| 69 | G4double HarpX(G4double y)
|
|---|
| 70 | {
|
|---|
| 71 | fY = y;
|
|---|
| 72 | G4SimpleIntegration myIntegrand(Harp);
|
|---|
| 73 | return myIntegrand.Simpson(X1,X2,fN);
|
|---|
| 74 | // return myIntegrand.Gauss(X1,X2,fN);
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 |
|
|---|
| 79 |
|
|---|
| 80 |
|
|---|
| 81 |
|
|---|
| 82 | G4double HarpY()
|
|---|
| 83 | {
|
|---|
| 84 | // G4int i;
|
|---|
| 85 | G4SimpleIntegration myIntegrand(HarpX);
|
|---|
| 86 | // G4double sum =0.;
|
|---|
| 87 | // for(i = 0; i < fN; i++)
|
|---|
| 88 | G4double result = myIntegrand.Simpson(Y1,Y2,fN);
|
|---|
| 89 | return result/twopi;
|
|---|
| 90 |
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | class B
|
|---|
| 94 | {
|
|---|
| 95 | typedef G4double (B::* PBmem)(G4double);
|
|---|
| 96 |
|
|---|
| 97 | public:
|
|---|
| 98 |
|
|---|
| 99 | B(){;}
|
|---|
| 100 |
|
|---|
| 101 | ~B(){;}
|
|---|
| 102 |
|
|---|
| 103 | G4double TestFunction(G4double x){ return std::exp(-x)*std::cos(x) ; }
|
|---|
| 104 |
|
|---|
| 105 | G4double CosFunction(G4double x) { return std::cos(x) ; }
|
|---|
| 106 |
|
|---|
| 107 | G4double TestHermite(G4double x){ return x*x*std::cos(x) ; }
|
|---|
| 108 |
|
|---|
| 109 | G4double HarpX(G4double);
|
|---|
| 110 | G4double HarpY(G4double);
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 | void Integrand() ;
|
|---|
| 114 |
|
|---|
| 115 | };
|
|---|
| 116 |
|
|---|
| 117 |
|
|---|
| 118 | void B::Integrand()
|
|---|
| 119 | {
|
|---|
| 120 | G4int i, n ;
|
|---|
| 121 | G4double pTolerance;
|
|---|
| 122 | G4double simpson1=0., simpson2=0. ;
|
|---|
| 123 | G4double legendre1=0., legendre2=0. ;
|
|---|
| 124 | G4double chebyshev1=0., chebyshev2=0. ;
|
|---|
| 125 | G4double adaptg1=0., adaptg2=0.;
|
|---|
| 126 | G4double a = 0.0 ;
|
|---|
| 127 | G4double b = twopi ;
|
|---|
| 128 |
|
|---|
| 129 | G4SimpleIntegration myIntegrand(GlobalFunction) ;
|
|---|
| 130 |
|
|---|
| 131 | G4Integrator<B,PBmem> integral;
|
|---|
| 132 |
|
|---|
| 133 | B bbb ;
|
|---|
| 134 |
|
|---|
| 135 | G4cout<<"Iter"
|
|---|
| 136 | <<"\t"<<"Simpson "<<"\t"<<"Simpson "
|
|---|
| 137 | <<"\t"<<"Legendre"<<"\t"<<"Legendre"
|
|---|
| 138 | <<"\t"<<"Chebyshev"<<"\t"<<"Chebyshev"<<G4endl ;
|
|---|
| 139 |
|
|---|
| 140 | for(i=1;i<=20;i++)
|
|---|
| 141 | {
|
|---|
| 142 | n = 2*i ;
|
|---|
| 143 |
|
|---|
| 144 | simpson1 = integral.Simpson(this,&B::TestFunction,a,b,n) ;
|
|---|
| 145 | legendre1 = integral.Legendre(this,&B::TestFunction,a,b,n) ;
|
|---|
| 146 | simpson2 = integral.Simpson(bbb,&B::TestFunction,a,b,n) ;
|
|---|
| 147 | legendre2 = integral.Legendre(bbb,&B::TestFunction,a,b,n) ;
|
|---|
| 148 | chebyshev1 = integral.Chebyshev(this,&B::TestFunction,a,b,n) ;
|
|---|
| 149 | chebyshev2 = integral.Chebyshev(bbb,&B::TestFunction,a,b,n) ;
|
|---|
| 150 |
|
|---|
| 151 | G4cout<<n
|
|---|
| 152 | <<"\t"<<simpson1<<"\t"<<simpson2
|
|---|
| 153 | <<"\t"<<legendre1<<"\t"<<legendre2
|
|---|
| 154 | <<"\t"<<chebyshev1<<"\t"<<chebyshev2<<G4endl ;
|
|---|
| 155 | }
|
|---|
| 156 | G4cout<<G4endl ;
|
|---|
| 157 |
|
|---|
| 158 | for(i=0;i<8;i++)
|
|---|
| 159 | {
|
|---|
| 160 | pTolerance = std::pow(10.0,-i) ;
|
|---|
| 161 | adaptg1 = integral.AdaptiveGauss(bbb,&B::TestFunction,a,b,pTolerance) ;
|
|---|
| 162 | adaptg2 = integral.AdaptiveGauss(this,&B::TestFunction,a,b,pTolerance) ;
|
|---|
| 163 | G4cout<<pTolerance<<"\t"<<adaptg1<<"\t"<<adaptg2<<G4endl;
|
|---|
| 164 | }
|
|---|
| 165 | for(i=1;i<20;i++)
|
|---|
| 166 | {
|
|---|
| 167 | n = 1*i ;
|
|---|
| 168 | G4double laguerre1=0., laguerre2=0.;
|
|---|
| 169 | laguerre1 = integral.Laguerre(bbb,&B::CosFunction,0.0,n) ;
|
|---|
| 170 | laguerre2 = integral.Laguerre(this,&B::CosFunction,0.0,n) ;
|
|---|
| 171 | G4cout<<"n = "<<n<<"\t"<<"exact = 0.5 "
|
|---|
| 172 | <<" and n-point GaussLaguerre = "
|
|---|
| 173 | <<laguerre1<<"\t"<<laguerre2<<G4endl ;
|
|---|
| 174 | }
|
|---|
| 175 | for(i=1;i<20;i++)
|
|---|
| 176 | {
|
|---|
| 177 | n = 1*i ;
|
|---|
| 178 | G4double hermite1=0., hermite2=0;
|
|---|
| 179 | G4double exactH = 2*0.125*std::sqrt(pi)*std::exp(-0.25) ;
|
|---|
| 180 | hermite1 = integral.Hermite(bbb,&B::TestHermite,n) ;
|
|---|
| 181 | hermite2 = integral.Hermite(this,&B::TestHermite,n) ;
|
|---|
| 182 | G4cout<<"n = "<<n<<"\t"<<"exact = "<<exactH
|
|---|
| 183 | <<" and n-point GaussHermite = "
|
|---|
| 184 | <<hermite1<<"\t"<<hermite2<<G4endl ;
|
|---|
| 185 | }
|
|---|
| 186 | G4double exactJ = pi*0.4400505857 ;
|
|---|
| 187 |
|
|---|
| 188 | for(i=1;i<20;i++)
|
|---|
| 189 | {
|
|---|
| 190 | n = 1*i ;
|
|---|
| 191 | G4double jacobi1=0., jacobi2=0.;
|
|---|
| 192 | jacobi1 = integral.Jacobi(bbb,&B::CosFunction,0.5,0.5,n) ;
|
|---|
| 193 | jacobi2 = integral.Jacobi(this,&B::CosFunction,0.5,0.5,n) ;
|
|---|
| 194 | G4cout<<"n = "<<n<<"\t"<<"exact = "<<exactJ
|
|---|
| 195 | <<" and n-point Gauss-Jacobi = "
|
|---|
| 196 | <<jacobi1<<"\t"<<jacobi2<<G4endl ;
|
|---|
| 197 | }
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 |
|
|---|
| 201 | int main()
|
|---|
| 202 | {
|
|---|
| 203 | B myIntegration ;
|
|---|
| 204 |
|
|---|
| 205 | myIntegration.Integrand() ;
|
|---|
| 206 |
|
|---|
| 207 | G4Integrator<B,function> iii ;
|
|---|
| 208 | G4int i, n ;
|
|---|
| 209 | G4double a = 0.0 ;
|
|---|
| 210 | G4double b = twopi ;
|
|---|
| 211 | G4double simpson3,legendre,legendre10,legendre96,chebyshev ;
|
|---|
| 212 |
|
|---|
| 213 | G4cout<<"Global function integration"<<G4endl ;
|
|---|
| 214 | G4cout<<"n = "<<"\t"<<"Simpson"<<"\t"
|
|---|
| 215 | <<"\t"<<"Legendre""\t"<<"Chebyshev"<<G4endl ;
|
|---|
| 216 | for(i=1;i<=30;i++)
|
|---|
| 217 | {
|
|---|
| 218 | n = 2*i ;
|
|---|
| 219 | simpson3 = iii.Simpson(GlobalFunction,a,b,n) ;
|
|---|
| 220 | legendre = iii.Legendre(GlobalFunction,a,b,n) ;
|
|---|
| 221 | chebyshev = iii.Chebyshev(GlobalFunction,a,b,n) ;
|
|---|
| 222 | G4cout<<n<<"\t"<<simpson3<<"\t"<<legendre<<"\t"<<chebyshev<<G4endl ;
|
|---|
| 223 | }
|
|---|
| 224 | legendre10 = iii.Legendre10(GlobalFunction,a,b) ;
|
|---|
| 225 | legendre96 = iii.Legendre96(GlobalFunction,a,b) ;
|
|---|
| 226 | G4cout<<"Legendre 10 points = "<<"\t"<<legendre10<<G4endl ;
|
|---|
| 227 | G4cout<<"Legendre 96 points = "<<"\t"<<legendre96<<G4endl ;
|
|---|
| 228 |
|
|---|
| 229 | for(i=0;i<8;i++)
|
|---|
| 230 | {
|
|---|
| 231 | G4double pTolerance = std::pow(10.0,-i) ;
|
|---|
| 232 | G4double adaptg = iii.AdaptiveGauss(GlobalFunction,a,b,pTolerance) ;
|
|---|
| 233 | G4cout<<pTolerance<<"\t"<<adaptg<<G4endl;
|
|---|
| 234 | }
|
|---|
| 235 | for(i=1;i<20;i++)
|
|---|
| 236 | {
|
|---|
| 237 | n = 1*i ;
|
|---|
| 238 | G4double laguerre = iii.Laguerre(GlobalCos,0.0,n) ;
|
|---|
| 239 | G4cout<<"n = "<<n<<"\t"<<"exact = 0.5 "
|
|---|
| 240 | <<" and n-point Laguerre = "
|
|---|
| 241 | <<laguerre<<G4endl ;
|
|---|
| 242 | }
|
|---|
| 243 | for(i=1;i<20;i++)
|
|---|
| 244 | {
|
|---|
| 245 | n = 1*i ;
|
|---|
| 246 | G4double exactH = 2*0.125*std::sqrt(pi)*std::exp(-0.25) ;
|
|---|
| 247 | G4double hermite = iii.Hermite(GlobalHermite,n) ;
|
|---|
| 248 | G4cout<<"n = "<<n<<"\t"<<"exact = "<<exactH
|
|---|
| 249 | <<" and n-point Hermite = "
|
|---|
| 250 | <<hermite<<G4endl ;
|
|---|
| 251 | }
|
|---|
| 252 | G4double exactJ = pi*0.4400505857 ;
|
|---|
| 253 |
|
|---|
| 254 | for(i=1;i<20;i++)
|
|---|
| 255 | {
|
|---|
| 256 | n = 1*i ;
|
|---|
| 257 | G4double jacobi = iii.Jacobi(GlobalCos,0.5,0.5,n) ;
|
|---|
| 258 | G4cout<<"n = "<<n<<"\t"<<"exact = "<<exactJ
|
|---|
| 259 | <<" and n-point Jacobi = "
|
|---|
| 260 | <<jacobi<<G4endl ;
|
|---|
| 261 | }
|
|---|
| 262 |
|
|---|
| 263 |
|
|---|
| 264 |
|
|---|
| 265 | G4cout<<"Ivanchenko integral = "<<HarpY()<<G4endl;
|
|---|
| 266 |
|
|---|
| 267 |
|
|---|
| 268 | return 0;
|
|---|
| 269 | }
|
|---|