| [1199] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: testChebyshev.cc,v 1.6 2006/06/29 19:00:28 gunter Exp $
|
|---|
| [1315] | 28 | // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
|
|---|
| [1199] | 29 | //
|
|---|
| 30 | // Test program for G4ChebyshevApproximation class. The function std::exp(-x)*std::cos(x) is
|
|---|
| 31 | // integrated between zero and two pi. The true result is 0.499066278634
|
|---|
| 32 | //
|
|---|
| 33 |
|
|---|
| 34 | #include "G4ios.hh"
|
|---|
| 35 | #include "globals.hh"
|
|---|
| 36 | #include "G4ChebyshevApproximation.hh"
|
|---|
| 37 |
|
|---|
| 38 | G4double TestChebyshev(G4double x)
|
|---|
| 39 | {
|
|---|
| 40 | return std::sqrt(1-x*x)*std::cos(x) ;
|
|---|
| 41 | }
|
|---|
| 42 |
|
|---|
| 43 | G4double TestFunction(G4double x)
|
|---|
| 44 | {
|
|---|
| 45 | return std::exp(-x)*std::cos(x) ;
|
|---|
| 46 | }
|
|---|
| 47 |
|
|---|
| 48 | G4double TestHermite(G4double x)
|
|---|
| 49 | {
|
|---|
| 50 | return x*x*std::cos(x) ;
|
|---|
| 51 | }
|
|---|
| 52 |
|
|---|
| 53 | G4double ExpFunction(G4double x)
|
|---|
| 54 | {
|
|---|
| 55 | return std::exp(x) ;
|
|---|
| 56 | }
|
|---|
| 57 |
|
|---|
| 58 | G4double SinFunction(G4double x)
|
|---|
| 59 | {
|
|---|
| 60 | return std::sin(x) ;
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | main()
|
|---|
| 64 | {
|
|---|
| 65 | G4int i, k, m, n = 30;
|
|---|
| 66 | G4double x = 3.0 ;
|
|---|
| 67 | G4double a = 0.0 ;
|
|---|
| 68 | G4double b = 10.0 ;
|
|---|
| 69 |
|
|---|
| 70 | G4double test, tolerance, true = ExpFunction(x) - 1.0 ;
|
|---|
| 71 | for(i=5;i<=n;i++)
|
|---|
| 72 | {
|
|---|
| 73 | G4ChebyshevApproximation myChebyshev(ExpFunction,a,b,i) ; // integral
|
|---|
| 74 | test = myChebyshev.ChebyshevEvaluation(x) ;
|
|---|
| 75 | tolerance = 2*(true-test)/(true+test) ;
|
|---|
| 76 | G4cout<<"n = "<<i<<"\t"<<"true = "<<true
|
|---|
| 77 | <<" and n-point ChebEval = "
|
|---|
| 78 | <<test<<"\t"<<tolerance<<G4endl ;
|
|---|
| 79 | }
|
|---|
| 80 | /* ********************************************************
|
|---|
| 81 | n = k*m + 10 ;
|
|---|
| 82 |
|
|---|
| 83 | G4double x = 3.0 ;
|
|---|
| 84 | G4double delta = m*0.1*x ;
|
|---|
| 85 | G4double a = x - delta ;
|
|---|
| 86 | G4double b = x + delta ;
|
|---|
| 87 |
|
|---|
| 88 | G4double test, tolerance, true = SinFunction(x) ;
|
|---|
| 89 | for(i=1+m;i<=n;i++)
|
|---|
| 90 | {
|
|---|
| 91 | G4ChebyshevApproximation myChebyshev(SinFunction,i,m,a,b) ; // m-derivative
|
|---|
| 92 | test = myChebyshev.ChebyshevEvaluation(x) ;
|
|---|
| 93 | tolerance = 2*(true-test)/(true+test) ;
|
|---|
| 94 | G4cout<<"n = "<<i<<"\t"<<"true = "<<true
|
|---|
| 95 | <<" and n-point ChebEval = "
|
|---|
| 96 | <<test<<"\t"<<tolerance<<G4endl ;
|
|---|
| 97 | }
|
|---|
| 98 | G4double test, tolerance, true = TestFunction(x) ;
|
|---|
| 99 | for(i=1;i<n;i++)
|
|---|
| 100 | {
|
|---|
| 101 | G4ChebyshevApproximation myChebyshev(TestFunction,i,a,b) ;
|
|---|
| 102 | test = myChebyshev.ChebyshevEvaluation(x) ;
|
|---|
| 103 | tolerance = 2*(true-test)/(true+test) ;
|
|---|
| 104 | G4cout<<"n = "<<i<<"\t"<<"true = "<<true
|
|---|
| 105 | <<" and n-point ChebEval = "
|
|---|
| 106 | <<test<<"\t"<<tolerance<<G4endl ;
|
|---|
| 107 | }
|
|---|
| 108 | */ ///////////////////////////////////////////////////
|
|---|
| 109 | return 0;
|
|---|
| 110 | }
|
|---|