source: trunk/source/global/HEPNumerics/test/testChebyshev.cc@ 1214

Last change on this file since 1214 was 1199, checked in by garnier, 16 years ago

nvx fichiers dans CVS

File size: 3.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: testChebyshev.cc,v 1.6 2006/06/29 19:00:28 gunter Exp $
28// GEANT4 tag $Name: geant4-09-02-ref-02 $
29//
30// Test program for G4ChebyshevApproximation class. The function std::exp(-x)*std::cos(x) is
31// integrated between zero and two pi. The true result is 0.499066278634
32//
33
34#include "G4ios.hh"
35#include "globals.hh"
36#include "G4ChebyshevApproximation.hh"
37
38G4double TestChebyshev(G4double x)
39{
40 return std::sqrt(1-x*x)*std::cos(x) ;
41}
42
43G4double TestFunction(G4double x)
44{
45 return std::exp(-x)*std::cos(x) ;
46}
47
48G4double TestHermite(G4double x)
49{
50 return x*x*std::cos(x) ;
51}
52
53G4double ExpFunction(G4double x)
54{
55 return std::exp(x) ;
56}
57
58G4double SinFunction(G4double x)
59{
60 return std::sin(x) ;
61}
62
63main()
64{
65 G4int i, k, m, n = 30;
66 G4double x = 3.0 ;
67 G4double a = 0.0 ;
68 G4double b = 10.0 ;
69
70 G4double test, tolerance, true = ExpFunction(x) - 1.0 ;
71 for(i=5;i<=n;i++)
72 {
73 G4ChebyshevApproximation myChebyshev(ExpFunction,a,b,i) ; // integral
74 test = myChebyshev.ChebyshevEvaluation(x) ;
75 tolerance = 2*(true-test)/(true+test) ;
76 G4cout<<"n = "<<i<<"\t"<<"true = "<<true
77 <<" and n-point ChebEval = "
78 <<test<<"\t"<<tolerance<<G4endl ;
79 }
80 /* ********************************************************
81 n = k*m + 10 ;
82
83 G4double x = 3.0 ;
84 G4double delta = m*0.1*x ;
85 G4double a = x - delta ;
86 G4double b = x + delta ;
87
88 G4double test, tolerance, true = SinFunction(x) ;
89 for(i=1+m;i<=n;i++)
90 {
91 G4ChebyshevApproximation myChebyshev(SinFunction,i,m,a,b) ; // m-derivative
92 test = myChebyshev.ChebyshevEvaluation(x) ;
93 tolerance = 2*(true-test)/(true+test) ;
94 G4cout<<"n = "<<i<<"\t"<<"true = "<<true
95 <<" and n-point ChebEval = "
96 <<test<<"\t"<<tolerance<<G4endl ;
97 }
98 G4double test, tolerance, true = TestFunction(x) ;
99 for(i=1;i<n;i++)
100 {
101 G4ChebyshevApproximation myChebyshev(TestFunction,i,a,b) ;
102 test = myChebyshev.ChebyshevEvaluation(x) ;
103 tolerance = 2*(true-test)/(true+test) ;
104 G4cout<<"n = "<<i<<"\t"<<"true = "<<true
105 <<" and n-point ChebEval = "
106 <<test<<"\t"<<tolerance<<G4endl ;
107 }
108*/ ///////////////////////////////////////////////////
109 return 0;
110}
Note: See TracBrowser for help on using the repository browser.