source: trunk/source/global/management/src/G4PhysicsVector.cc@ 1315

Last change on this file since 1315 was 1315, checked in by garnier, 15 years ago

update geant4-09-04-beta-cand-01 interfaces-V09-03-09 vis-V09-03-08

File size: 15.5 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4PhysicsVector.cc,v 1.46 2010/05/28 05:13:43 kurasige Exp $
28// GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
29//
30//
31// --------------------------------------------------------------
32// GEANT 4 class implementation file
33//
34// G4PhysicsVector.cc
35//
36// History:
37// 02 Dec. 1995, G.Cosmo : Structure created based on object model
38// 03 Mar. 1996, K.Amako : Implemented the 1st version
39// 01 Jul. 1996, K.Amako : Hidden bin from the user introduced
40// 12 Nov. 1998, K.Amako : A bug in GetVectorLength() fixed
41// 11 Nov. 2000, H.Kurashige : use STL vector for dataVector and binVector
42// 18 Jan. 2001, H.Kurashige : removed ptrNextTable
43// 09 Mar. 2001, H.Kurashige : added G4PhysicsVector type
44// 05 Sep. 2008, V.Ivanchenko : added protections for zero-length vector
45// 11 May 2009, A.Bagulya : added new implementation of methods
46// ComputeSecondDerivatives - first derivatives at edge points
47// should be provided by a user
48// FillSecondDerivatives - default computation base on "not-a-knot"
49// algorithm
50// 19 Jun. 2009, V.Ivanchenko : removed hidden bin
51// 17 Nov. 2009, H.Kurashige : use pointer for DataVector
52// 04 May 2010 H.Kurashige : use G4PhyscisVectorCache
53// 28 May 2010 H.Kurashige : Stop using pointers to G4PVDataVector
54// --------------------------------------------------------------
55
56#include "G4PhysicsVector.hh"
57#include <iomanip>
58
59// --------------------------------------------------------------
60
61G4PhysicsVector::G4PhysicsVector(G4bool spline)
62 : type(T_G4PhysicsVector),
63 edgeMin(0.), edgeMax(0.), numberOfNodes(0),
64 useSpline(spline)
65{
66 cache = new G4PhysicsVectorCache();
67}
68
69// --------------------------------------------------------------
70
71G4PhysicsVector::~G4PhysicsVector()
72{
73 delete cache; cache =0;
74}
75
76// --------------------------------------------------------------
77
78G4PhysicsVector::G4PhysicsVector(const G4PhysicsVector& right)
79{
80 cache = new G4PhysicsVectorCache();
81 CopyData(right);
82}
83
84// --------------------------------------------------------------
85
86G4PhysicsVector& G4PhysicsVector::operator=(const G4PhysicsVector& right)
87{
88 if (&right==this) { return *this; }
89 if (type != right.type) { return *this; }
90
91 //DeleteData();
92 CopyData(right);
93
94 return *this;
95}
96
97// --------------------------------------------------------------
98
99G4int G4PhysicsVector::operator==(const G4PhysicsVector &right) const
100{
101 return (this == &right);
102}
103
104// --------------------------------------------------------------
105
106G4int G4PhysicsVector::operator!=(const G4PhysicsVector &right) const
107{
108 return (this != &right);
109}
110
111// --------------------------------------------------------------
112
113void G4PhysicsVector::DeleteData()
114{
115 secDerivative.clear();
116}
117
118// --------------------------------------------------------------
119
120void G4PhysicsVector::CopyData(const G4PhysicsVector& vec)
121{
122 type = vec.type;
123 edgeMin = vec.edgeMin;
124 edgeMax = vec.edgeMax;
125 numberOfNodes = vec.numberOfNodes;
126 cache->lastEnergy = vec.GetLastEnergy();
127 cache->lastValue = vec.GetLastValue();
128 cache->lastBin = vec.GetLastBin();
129 useSpline = vec.useSpline;
130 comment = vec.comment;
131
132 size_t i;
133 dataVector.clear();
134 for(i=0; i<(vec.dataVector).size(); i++){
135 dataVector.push_back( (vec.dataVector)[i] );
136 }
137 binVector.clear();
138 for(i=0; i<(vec.binVector).size(); i++){
139 binVector.push_back( (vec.binVector)[i] );
140 }
141 secDerivative.clear();
142 for(i=0; i<(vec.secDerivative).size(); i++){
143 secDerivative.push_back( (vec.secDerivative)[i] );
144 }
145}
146
147// --------------------------------------------------------------
148
149G4double G4PhysicsVector::GetLowEdgeEnergy(size_t binNumber) const
150{
151 return binVector[binNumber];
152}
153
154// --------------------------------------------------------------
155
156G4bool G4PhysicsVector::Store(std::ofstream& fOut, G4bool ascii)
157{
158 // Ascii mode
159 if (ascii)
160 {
161 fOut << *this;
162 return true;
163 }
164 // Binary Mode
165
166 // binning
167 fOut.write((char*)(&edgeMin), sizeof edgeMin);
168 fOut.write((char*)(&edgeMax), sizeof edgeMax);
169 fOut.write((char*)(&numberOfNodes), sizeof numberOfNodes);
170
171 // contents
172 size_t size = dataVector.size();
173 fOut.write((char*)(&size), sizeof size);
174
175 G4double* value = new G4double[2*size];
176 for(size_t i = 0; i < size; ++i)
177 {
178 value[2*i] = binVector[i];
179 value[2*i+1]= dataVector[i];
180 }
181 fOut.write((char*)(value), 2*size*(sizeof (G4double)));
182 delete [] value;
183
184 return true;
185}
186
187// --------------------------------------------------------------
188
189G4bool G4PhysicsVector::Retrieve(std::ifstream& fIn, G4bool ascii)
190{
191 // clear properties;
192 cache->lastEnergy=-DBL_MAX;
193 cache->lastValue =0.;
194 cache->lastBin =0;
195 dataVector.clear();
196 binVector.clear();
197 secDerivative.clear();
198 comment = "";
199
200 // retrieve in ascii mode
201 if (ascii)
202 {
203 // binning
204 fIn >> edgeMin >> edgeMax >> numberOfNodes;
205 if (fIn.fail()) { return false; }
206 // contents
207 size_t size=0;
208 fIn >> size;
209 if (fIn.fail()) { return false; }
210
211 binVector.reserve(size);
212 dataVector.reserve(size);
213 G4double vBin, vData;
214
215 for(size_t i = 0; i < size ; i++)
216 {
217 vBin = 0.;
218 vData= 0.;
219 fIn >> vBin >> vData;
220 if (fIn.fail()) { return false; }
221 binVector.push_back(vBin);
222 dataVector.push_back(vData);
223 }
224 return true ;
225 }
226
227 // retrieve in binary mode
228 // binning
229 fIn.read((char*)(&edgeMin), sizeof edgeMin);
230 fIn.read((char*)(&edgeMax), sizeof edgeMax);
231 fIn.read((char*)(&numberOfNodes), sizeof numberOfNodes );
232
233 // contents
234 size_t size;
235 fIn.read((char*)(&size), sizeof size);
236
237 G4double* value = new G4double[2*size];
238 fIn.read((char*)(value), 2*size*(sizeof(G4double)) );
239 if (G4int(fIn.gcount()) != G4int(2*size*(sizeof(G4double))) )
240 {
241 delete [] value;
242 return false;
243 }
244
245 binVector.reserve(size);
246 dataVector.reserve(size);
247 for(size_t i = 0; i < size; ++i)
248 {
249 binVector.push_back(value[2*i]);
250 dataVector.push_back(value[2*i+1]);
251 }
252 delete [] value;
253 return true;
254}
255
256// --------------------------------------------------------------
257
258void
259G4PhysicsVector::ScaleVector(G4double factorE, G4double factorV)
260{
261 size_t n = dataVector.size();
262 size_t i;
263 if(n > 0) {
264 for(i=0; i<n; ++i) {
265 binVector[i] *= factorE;
266 dataVector[i] *= factorV;
267 }
268 }
269 n = secDerivative.size();
270 if(n > 0) { for(i=0; i<n; ++i) { secDerivative[i] *= factorV; } }
271
272 edgeMin *= factorE;
273 edgeMax *= factorE;
274 cache->lastEnergy = factorE*(cache->lastEnergy);
275 cache->lastValue = factorV*(cache->lastValue);
276}
277
278// --------------------------------------------------------------
279
280void
281G4PhysicsVector::ComputeSecondDerivatives(G4double firstPointDerivative,
282 G4double endPointDerivative)
283 // A standard method of computation of second derivatives
284 // First derivatives at the first and the last point should be provided
285 // See for example W.H. Press et al. "Numerical reciptes and C"
286 // Cambridge University Press, 1997.
287{
288 if(4 > numberOfNodes) // cannot compute derivatives for less than 4 bins
289 {
290 ComputeSecDerivatives();
291 return;
292 }
293
294 if(!SplinePossible()) { return; }
295
296 G4int n = numberOfNodes-1;
297
298 G4double* u = new G4double [n];
299
300 G4double p, sig, un;
301
302 u[0] = (6.0/(binVector[1]-binVector[0]))
303 * ((dataVector[1]-dataVector[0])/(binVector[1]-binVector[0])
304 - firstPointDerivative);
305
306 secDerivative[0] = - 0.5;
307
308 // Decomposition loop for tridiagonal algorithm. secDerivative[i]
309 // and u[i] are used for temporary storage of the decomposed factors.
310
311 for(G4int i=1; i<n; ++i)
312 {
313 sig = (binVector[i]-binVector[i-1]) / (binVector[i+1]-binVector[i-1]);
314 p = sig*(secDerivative[i-1]) + 2.0;
315 secDerivative[i] = (sig - 1.0)/p;
316 u[i] = (dataVector[i+1]-dataVector[i])/(binVector[i+1]-binVector[i])
317 - (dataVector[i]-dataVector[i-1])/(binVector[i]-binVector[i-1]);
318 u[i] = 6.0*u[i]/(binVector[i+1]-binVector[i-1]) - sig*u[i-1]/p;
319 }
320
321 sig = (binVector[n-1]-binVector[n-2]) / (binVector[n]-binVector[n-2]);
322 p = sig*secDerivative[n-2] + 2.0;
323 un = (6.0/(binVector[n]-binVector[n-1]))
324 *(endPointDerivative -
325 (dataVector[n]-dataVector[n-1])/(binVector[n]-binVector[n-1])) - u[n-1]/p;
326 secDerivative[n] = un/(secDerivative[n-1] + 2.0);
327
328 // The back-substitution loop for the triagonal algorithm of solving
329 // a linear system of equations.
330
331 for(G4int k=n-1; k>0; --k)
332 {
333 secDerivative[k] *=
334 (secDerivative[k+1] -
335 u[k]*(binVector[k+1]-binVector[k-1])/(binVector[k+1]-binVector[k]));
336 }
337 secDerivative[0] = 0.5*(u[0] - secDerivative[1]);
338
339 delete [] u;
340}
341
342// --------------------------------------------------------------
343
344void G4PhysicsVector::FillSecondDerivatives()
345 // Computation of second derivatives using "Not-a-knot" endpoint conditions
346 // B.I. Kvasov "Methods of shape-preserving spline approximation"
347 // World Scientific, 2000
348{
349 if(5 > numberOfNodes) // cannot compute derivatives for less than 4 points
350 {
351 ComputeSecDerivatives();
352 return;
353 }
354
355 if(!SplinePossible()) { return; }
356
357 G4int n = numberOfNodes-1;
358
359 //G4cout << "G4PhysicsVector::FillSecondDerivatives() n= " << n << G4endl;
360 // G4cout << *this << G4endl;
361
362 G4double* u = new G4double [n];
363
364 G4double p, sig;
365
366 u[1] = ((dataVector[2]-dataVector[1])/(binVector[2]-binVector[1]) -
367 (dataVector[1]-dataVector[0])/(binVector[1]-binVector[0]));
368 u[1] = 6.0*u[1]*(binVector[2]-binVector[1])
369 / ((binVector[2]-binVector[0])*(binVector[2]-binVector[0]));
370
371 // Decomposition loop for tridiagonal algorithm. secDerivative[i]
372 // and u[i] are used for temporary storage of the decomposed factors.
373
374 secDerivative[1] = (2.0*binVector[1]-binVector[0]-binVector[2])
375 / (2.0*binVector[2]-binVector[0]-binVector[1]);
376
377 for(G4int i=2; i<n-1; ++i)
378 {
379 sig = (binVector[i]-binVector[i-1]) / (binVector[i+1]-binVector[i-1]);
380 p = sig*secDerivative[i-1] + 2.0;
381 secDerivative[i] = (sig - 1.0)/p;
382 u[i] = (dataVector[i+1]-dataVector[i])/(binVector[i+1]-binVector[i])
383 - (dataVector[i]-dataVector[i-1])/(binVector[i]-binVector[i-1]);
384 u[i] = (6.0*u[i]/(binVector[i+1]-binVector[i-1])) - sig*u[i-1]/p;
385 }
386
387 sig = (binVector[n-1]-binVector[n-2]) / (binVector[n]-binVector[n-2]);
388 p = sig*secDerivative[n-3] + 2.0;
389 u[n-1] = (dataVector[n]-dataVector[n-1])/(binVector[n]-binVector[n-1])
390 - (dataVector[n-1]-dataVector[n-2])/(binVector[n-1]-binVector[n-2]);
391 u[n-1] = 6.0*sig*u[n-1]/(binVector[n]-binVector[n-2])
392 - (2.0*sig - 1.0)*u[n-2]/p;
393
394 p = (1.0+sig) + (2.0*sig-1.0)*secDerivative[n-2];
395 secDerivative[n-1] = u[n-1]/p;
396
397 // The back-substitution loop for the triagonal algorithm of solving
398 // a linear system of equations.
399
400 for(G4int k=n-2; k>1; --k)
401 {
402 secDerivative[k] *=
403 (secDerivative[k+1] -
404 u[k]*(binVector[k+1]-binVector[k-1])/(binVector[k+1]-binVector[k]));
405 }
406 secDerivative[n] = (secDerivative[n-1] - (1.0-sig)*secDerivative[n-2])/sig;
407 sig = 1.0 - ((binVector[2]-binVector[1])/(binVector[2]-binVector[0]));
408 secDerivative[1] *= (secDerivative[2] - u[1]/(1.0-sig));
409 secDerivative[0] = (secDerivative[1] - sig*secDerivative[2])/(1.0-sig);
410
411 delete [] u;
412}
413
414// --------------------------------------------------------------
415
416void
417G4PhysicsVector::ComputeSecDerivatives()
418 // A simplified method of computation of second derivatives
419{
420 if(!SplinePossible()) { return; }
421
422 if(3 > numberOfNodes) // cannot compute derivatives for less than 4 bins
423 {
424 useSpline = false;
425 return;
426 }
427
428 size_t n = numberOfNodes-1;
429
430 for(size_t i=1; i<n; ++i)
431 {
432 secDerivative[i] =
433 3.0*((dataVector[i+1]-dataVector[i])/(binVector[i+1]-binVector[i]) -
434 (dataVector[i]-dataVector[i-1])/(binVector[i]-binVector[i-1]))
435 /(binVector[i+1]-binVector[i-1]);
436 }
437 secDerivative[n] = secDerivative[n-1];
438 secDerivative[0] = secDerivative[1];
439}
440
441// --------------------------------------------------------------
442
443G4bool G4PhysicsVector::SplinePossible()
444 // Initialise second derivative array. If neighbor energy coincide
445 // or not ordered than spline cannot be applied
446{
447 if(!useSpline) return useSpline;
448 secDerivative.clear();
449 secDerivative.reserve(numberOfNodes);
450 for(size_t j=0; j<numberOfNodes; ++j)
451 {
452 secDerivative.push_back(0.0);
453 if(j > 0)
454 {
455 if(binVector[j]-binVector[j-1] <= 0.) { useSpline = false; }
456 }
457 }
458 return useSpline;
459}
460
461// --------------------------------------------------------------
462
463std::ostream& operator<<(std::ostream& out, const G4PhysicsVector& pv)
464{
465 // binning
466 out << std::setprecision(12) << pv.edgeMin;
467 out <<" " << pv.edgeMax <<" " << pv.numberOfNodes << G4endl;
468
469 // contents
470 out << pv.dataVector.size() << G4endl;
471 for(size_t i = 0; i < pv.dataVector.size(); i++)
472 {
473 out << std::setprecision(12) << pv.binVector[i] << " "
474 << pv.dataVector[i] << G4endl;
475 }
476 return out;
477}
478
479//---------------------------------------------------------------
480
481G4double G4PhysicsVector::Value(G4double theEnergy)
482{
483 // Use cache for speed up - check if the value 'theEnergy' is same as the
484 // last call. If it is same, then use the last bin location. Also the
485 // value 'theEnergy' lies between the last energy and low edge of of the
486 // bin of last call, then the last bin location is used.
487
488 if( theEnergy == cache->lastEnergy ) {
489
490 } else if( theEnergy < cache->lastEnergy
491 && theEnergy >= binVector[cache->lastBin]) {
492 cache->lastEnergy = theEnergy;
493 Interpolation(cache->lastBin);
494
495 } else if( theEnergy <= edgeMin ) {
496 cache->lastBin = 0;
497 cache->lastEnergy = edgeMin;
498 cache->lastValue = dataVector[0];
499
500 } else if( theEnergy >= edgeMax ){
501 cache->lastBin = numberOfNodes-1;
502 cache->lastEnergy = edgeMax;
503 cache->lastValue = dataVector[cache->lastBin];
504
505 } else {
506 cache->lastBin = FindBinLocation(theEnergy);
507 cache->lastEnergy = theEnergy;
508 Interpolation(cache->lastBin);
509 }
510 return cache->lastValue;
511}
512
Note: See TracBrowser for help on using the repository browser.