// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4IonisParamMat.cc,v 1.20 2007/09/27 14:05:47 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-01-patch-02 $ // // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... // 09-07-98, data moved from G4Material, M.Maire // 18-07-98, bug corrected in ComputeDensityEffect() for gas // 16-01-01, bug corrected in ComputeDensityEffect() E100eV (L.Urban) // 08-02-01, fShellCorrectionVector correctly handled (mma) // 28-10-02, add setMeanExcitationEnergy (V.Ivanchenko) // 06-09-04, factor 2 to shell correction term (V.Ivanchenko) // 10-05-05, add a missing coma in FindMeanExcitationEnergy() - Bug#746 (mma) // 27-09-07, add computation of parameters for ions (V.Ivanchenko) //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... #include "G4IonisParamMat.hh" #include "G4Material.hh" #include "G4NistManager.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... G4IonisParamMat::G4IonisParamMat(G4Material* material) : fMaterial(material) { ComputeMeanParameters(); ComputeDensityEffect(); ComputeFluctModel(); ComputeIonParameters(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... // Fake default constructor - sets only member data and allocates memory // for usage restricted to object persistency G4IonisParamMat::G4IonisParamMat(__void__&) : fMaterial(0), fShellCorrectionVector(0) { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... void G4IonisParamMat::ComputeMeanParameters() { // compute mean excitation energy and shell correction vector fTaul = (*(fMaterial->GetElementVector()))[0]->GetIonisation()->GetTaul(); fMeanExcitationEnergy = 0.; fLogMeanExcEnergy = 0.; for (size_t i=0; i < fMaterial->GetNumberOfElements(); i++) { fLogMeanExcEnergy += (fMaterial->GetVecNbOfAtomsPerVolume())[i] *((*(fMaterial->GetElementVector()))[i]->GetZ()) *std::log((*(fMaterial->GetElementVector()))[i]->GetIonisation() ->GetMeanExcitationEnergy()); } fLogMeanExcEnergy /= fMaterial->GetTotNbOfElectPerVolume(); fMeanExcitationEnergy = std::exp(fLogMeanExcEnergy); fShellCorrectionVector = new G4double[3]; //[3] for (G4int j=0; j<=2; j++) { fShellCorrectionVector[j] = 0.; for (size_t k=0; kGetNumberOfElements(); k++) { fShellCorrectionVector[j] += (fMaterial->GetVecNbOfAtomsPerVolume())[k] *((*(fMaterial->GetElementVector()))[k]->GetIonisation() ->GetShellCorrectionVector()[j]); } fShellCorrectionVector[j] *= 2.0/fMaterial->GetTotNbOfElectPerVolume(); } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... void G4IonisParamMat::ComputeDensityEffect() { // Compute parameters for the density effect correction in DE/Dx formula. // The parametrization is from R.M. Sternheimer, Phys. Rev.B,3:3681 (1971) const G4double Cd2 = 4*pi*hbarc_squared*classic_electr_radius; const G4double twoln10 = 2.*std::log(10.); G4int icase; fCdensity = 1. + std::log(fMeanExcitationEnergy*fMeanExcitationEnergy /(Cd2*fMaterial->GetTotNbOfElectPerVolume())); // // condensed materials // G4State State = fMaterial->GetState(); if ((State == kStateSolid)||(State == kStateLiquid)) { const G4double E100eV = 100.*eV; const G4double ClimiS[] = {3.681 , 5.215 }; const G4double X0valS[] = {1.0 , 1.5 }; const G4double X1valS[] = {2.0 , 3.0 }; if(fMeanExcitationEnergy < E100eV) icase = 0; else icase = 1; if(fCdensity < ClimiS[icase]) fX0density = 0.2; else fX0density = 0.326*fCdensity-X0valS[icase]; fX1density = X1valS[icase] ; fMdensity = 3.0; //special: Hydrogen if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==1.)) { fX0density = 0.425; fX1density = 2.0; fMdensity = 5.949; } } // // gases // if (State == kStateGas) { const G4double ClimiG[] = { 10. , 10.5 , 11. , 11.5 , 12.25 , 13.804}; const G4double X0valG[] = { 1.6 , 1.7 , 1.8 , 1.9 , 2.0 , 2.0 }; const G4double X1valG[] = { 4.0 , 4.0 , 4.0 , 4.0 , 4.0 , 5.0 }; icase = 5; fX0density = 0.326*fCdensity-2.5 ; fX1density = 5.0 ; fMdensity = 3. ; while((icase > 0)&&(fCdensity < ClimiG[icase])) icase-- ; fX0density = X0valG[icase] ; fX1density = X1valG[icase] ; //special: Hydrogen if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==1.)) { fX0density = 1.837; fX1density = 3.0; fMdensity = 4.754; } //special: Helium if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==2.)) { fX0density = 2.191; fX1density = 3.0; fMdensity = 3.297; } // change parameters if the gas is not in STP. // For the correction the density(STP) is needed. // Density(STP) is calculated here : G4double Density = fMaterial->GetDensity(); G4double Pressure = fMaterial->GetPressure(); G4double Temp = fMaterial->GetTemperature(); G4double DensitySTP = Density*STP_Pressure*Temp/(Pressure*STP_Temperature); G4double ParCorr = std::log(Density/DensitySTP); fCdensity -= ParCorr; fX0density -= ParCorr/twoln10; fX1density -= ParCorr/twoln10; } G4double Xa = fCdensity/twoln10; fAdensity = twoln10*(Xa-fX0density) /std::pow((fX1density-fX0density),fMdensity); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... void G4IonisParamMat::ComputeFluctModel() { // compute parameters for the energy loss fluctuation model // need an 'effective Z' ????? G4double Zeff = 0.; for (size_t i=0;iGetNumberOfElements();i++) Zeff += (fMaterial->GetFractionVector())[i] *((*(fMaterial->GetElementVector()))[i]->GetZ()); if (Zeff > 2.) fF2fluct = 2./Zeff ; else fF2fluct = 0.; fF1fluct = 1. - fF2fluct; fEnergy2fluct = 10.*Zeff*Zeff*eV; fLogEnergy2fluct = std::log(fEnergy2fluct); fLogEnergy1fluct = (fLogMeanExcEnergy - fF2fluct*fLogEnergy2fluct) /fF1fluct; fEnergy1fluct = std::exp(fLogEnergy1fluct); fEnergy0fluct = 10.*eV; fRateionexcfluct = 0.4; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... void G4IonisParamMat::ComputeIonParameters() { // compute parameters for ion transport // The aproximation from: // J.F.Ziegler, J.P. Biersack, U. Littmark // The Stopping and Range of Ions in Matter, // Vol.1, Pergamon Press, 1985 // Fast ions or hadrons static G4double vFermi[92] = { 1.0309, 0.15976, 0.59782, 1.0781, 1.0486, 1.0, 1.058, 0.93942, 0.74562, 0.3424, 0.45259, 0.71074, 0.90519, 0.97411, 0.97184, 0.89852, 0.70827, 0.39816, 0.36552, 0.62712, 0.81707, 0.9943, 1.1423, 1.2381, 1.1222, 0.92705, 1.0047, 1.2, 1.0661, 0.97411, 0.84912, 0.95, 1.0903, 1.0429, 0.49715, 0.37755, 0.35211, 0.57801, 0.77773, 1.0207, 1.029, 1.2542, 1.122, 1.1241, 1.0882, 1.2709, 1.2542, 0.90094, 0.74093, 0.86054, 0.93155, 1.0047, 0.55379, 0.43289, 0.32636, 0.5131, 0.695, 0.72591, 0.71202, 0.67413, 0.71418, 0.71453, 0.5911, 0.70263, 0.68049, 0.68203, 0.68121, 0.68532, 0.68715, 0.61884, 0.71801, 0.83048, 1.1222, 1.2381, 1.045, 1.0733, 1.0953, 1.2381, 1.2879, 0.78654, 0.66401, 0.84912, 0.88433, 0.80746, 0.43357, 0.41923, 0.43638, 0.51464, 0.73087, 0.81065, 1.9578, 1.0257} ; static G4double lFactor[92] = { 1.0, 1.0, 1.1, 1.06, 1.01, 1.03, 1.04, 0.99, 0.95, 0.9, 0.82, 0.81, 0.83, 0.88, 1.0, 0.95, 0.97, 0.99, 0.98, 0.97, 0.98, 0.97, 0.96, 0.93, 0.91, 0.9, 0.88, 0.9, 0.9, 0.9, 0.9, 0.85, 0.9, 0.9, 0.91, 0.92, 0.9, 0.9, 0.9, 0.9, 0.9, 0.88, 0.9, 0.88, 0.88, 0.9, 0.9, 0.88, 0.9, 0.9, 0.9, 0.9, 0.96, 1.2, 0.9, 0.88, 0.88, 0.85, 0.9, 0.9, 0.92, 0.95, 0.99, 1.03, 1.05, 1.07, 1.08, 1.1, 1.08, 1.08, 1.08, 1.08, 1.09, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.17, 1.2, 1.18, 1.17, 1.17, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16} ; // get elements in the actual material, const G4ElementVector* theElementVector = fMaterial->GetElementVector() ; const G4double* theAtomicNumDensityVector = fMaterial->GetAtomicNumDensityVector() ; const G4int NumberOfElements = fMaterial->GetNumberOfElements() ; // loop for the elements in the material // to find out average values Z, vF, lF G4double z = 0.0, vF = 0.0, lF = 0.0, norm = 0.0 ; if( 1 == NumberOfElements ) { z = fMaterial->GetZ() ; G4int iz = G4int(z) - 1 ; if(iz < 0) iz = 0 ; else if(iz > 91) iz = 91 ; vF = vFermi[iz] ; lF = lFactor[iz] ; } else { for (G4int iel=0; ielGetZ() ; const G4double weight = theAtomicNumDensityVector[iel] ; norm += weight ; z += z2 * weight ; G4int iz = G4int(z2) - 1 ; if(iz < 0) iz = 0 ; else if(iz > 91) iz =91 ; vF += vFermi[iz] * weight ; lF += lFactor[iz] * weight ; } z /= norm ; vF /= norm ; lF /= norm ; } fZeff = z; fLfactor = lF; fFermiEnergy = 25.*keV*vF*vF; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... void G4IonisParamMat::SetMeanExcitationEnergy(G4double value) { if(value == fMeanExcitationEnergy || value <= 0.0) return; if (G4NistManager::Instance()->GetVerbose() > 0) G4cout << "G4Material: Mean excitation energy is changed for " << fMaterial->GetName() << " Iold= " << fMeanExcitationEnergy/eV << "eV; Inew= " << value/eV << " eV;" << G4endl; fMeanExcitationEnergy = value; fLogMeanExcEnergy = std::log(value); ComputeDensityEffect(); ComputeFluctModel(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... G4double G4IonisParamMat::FindMeanExcitationEnergy(const G4String& chFormula) { // The data on mean excitation energy for compaunds // from "Stopping Powers for Electrons and Positrons" // ICRU Report N#37, 1984 (energy in eV) const size_t numberOfMolecula = 79 ; static G4String name[numberOfMolecula] = { // gas "NH_3", "C_4H_10", "CO_2", "C_2H_6", "C_7H_16", "C_6H_14", "CH_4", "NO", "N_2O", "C_8H_18", "C_5H_12", "C_3H_8", "H_2O-Gas", // liquid "C_3H_6O", "C_6H_5NH_2", "C_6H_6", "C_4H_9OH", "CCl_4", "C_6H_5Cl", "CHCl_3", "C_6H_12", "C_6H_4Cl_2", "C_4Cl_2H_8O", "C_2Cl_2H_4", "(C_2H_5)_2O", "C_2H_5OH", "C_3H_5(OH)_3","C_7H_16", "C_6H_14", "CH_3OH", "C_6H_5NO_2","C_5H_12", "C_3H_7OH", "C_5H_5N", "C_8H_8", "C_2Cl_4", "C_7H_8", "C_2Cl_3H", "H_2O", "C_8H_10", //solid "C_5H_5N_5", "C_5H_5N_5O", "(C_6H_11NO)-nylon", "C_25H_52", "(C_2H_4)-Polyethylene", "(C_5H_8O-2)-Polymethil_Methacrylate", "(C_8H_8)-Polystyrene", "A-150-tissue", "Al_2O_3", "CaF_2", "LiF", "Photo_Emulsion", "(C_2F_4)-Teflon", "SiO_2" } ; static G4double meanExcitation[numberOfMolecula] = { 53.7, 48.3, 85.0, 45.4, 49.2, 49.1, 41.7, 87.8, 84.9, 49.5, 48.2, 47.1, 71.6, 64.2, 66.2, 63.4, 59.9, 166.3, 89.1, 156.0, 56.4, 106.5, 103.3, 111.9, 60.0, 62.9, 72.6, 54.4, 54.0, 67.6, 75.8, 53.6, 61.1, 66.2, 64.0, 159.2, 62.5, 148.1, 75.0, 61.8, 71.4, 75.0, 63.9, 48.3, 57.4, 74.0, 68.7, 65.1, 145.2, 166., 94.0, 331.0, 99.1, 139.2 } ; G4double x = fMeanExcitationEnergy; for(size_t i=0; i