// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4MaterialsTest.cc,v 1.9 2006/06/29 19:13:14 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // // // ------------------------------------------------------------ // // // This program illustrates the different ways to define materials // #include "G4ios.hh" #include "G4Isotope.hh" #include "G4Element.hh" #include "G4Material.hh" #include "G4UnitsTable.hh" int main() { G4String name, symbol; // a=mass of a mole; G4double a, z, density; // z=mean number of protons; G4int iz, n; //iz=nb of protons in an isotope; // n=nb of nucleons in an isotope; G4int ncomponents, natoms; G4double abundance, fractionmass; G4double temperature, pressure; G4UnitDefinition::BuildUnitsTable(); // // define Elements // a = 1.01*g/mole; G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); a = 12.01*g/mole; G4Element* elC = new G4Element(name="Carbon" ,symbol="C" , z= 6., a); a = 14.01*g/mole; G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 28.09*g/mole; G4Element* elSi = new G4Element(name="Silicon",symbol="Si" , z= 14., a); a = 55.85*g/mole; G4Element* elFe = new G4Element(name="Iron" ,symbol="Fe", z=26., a); // // define an Element from isotopes, by relative abundance // G4Isotope* U5 = new G4Isotope(name="U235", iz=92, n=235); G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238); G4Element* elU=new G4Element(name="enriched Uranium",symbol="U",ncomponents=2); elU->AddIsotope(U5, abundance= 90.*perCent); elU->AddIsotope(U8, abundance= 10.*perCent); G4cout << *(G4Isotope::GetIsotopeTable()) << G4endl; G4cout << *(G4Element::GetElementTable()) << G4endl; // // define simple materials // density = 2.700*g/cm3; a = 26.98*g/mole; G4Material* Al = new G4Material(name="Aluminium", z=13., a, density); density = 1.390*g/cm3; a = 39.95*g/mole; G4Material* lAr = new G4Material(name="liquidArgon", z=18., a, density); density = 8.960*g/cm3; a = 63.55*g/mole; G4Material* Cu = new G4Material(name="Copper" , z=29., a, density); density = 11.35*g/cm3; a = 207.19*g/mole; G4Material* Pb = new G4Material(name="Lead " , z=82., a, density); // // define a material from elements. case 1: chemical molecule // density = 1.000*g/cm3; G4Material* H2O = new G4Material(name="Water", density, ncomponents=2); H2O->AddElement(elH, natoms=2); H2O->AddElement(elO, natoms=1); density = 1.032*g/cm3; G4Material* Sci = new G4Material(name="Scintillator", density, ncomponents=2); Sci->AddElement(elC, natoms=9); Sci->AddElement(elH, natoms=10); density = 2.200*g/cm3; G4Material* SiO2 = new G4Material(name="quartz", density, ncomponents=2); SiO2->AddElement(elSi, natoms=1); SiO2->AddElement(elO , natoms=2); // // define a material from elements. case 2: mixture by fractional mass // density = 1.290*mg/cm3; G4Material* Air = new G4Material(name="Air " , density, ncomponents=2); Air->AddElement(elN, fractionmass=0.7); Air->AddElement(elO, fractionmass=0.3); // // define a material from elements and/or others materials (mixture of mixtures) // density = 0.200*g/cm3; G4Material* Aerog = new G4Material(name="Aerogel", density, ncomponents=3); Aerog->AddMaterial(SiO2, fractionmass=0.625); Aerog->AddMaterial(H2O , fractionmass=0.374); Aerog->AddElement (elC , fractionmass=0.1*perCent); // // examples of gas in non STP conditions // density = 27.*mg/cm3; pressure = 50.*atmosphere; temperature = 325.*kelvin; G4Material* CO2 = new G4Material(name="Carbonic gas", density, ncomponents=2, kStateGas,temperature,pressure); CO2->AddElement(elC, natoms=1); CO2->AddElement(elO, natoms=2); density = 2.67*mg/cm3; pressure = 1.*atmosphere; temperature = 273.15*kelvin; G4Material* C4H10 = new G4Material(name="isobutane", density, ncomponents=2, kStateGas,temperature,pressure); C4H10->AddElement(elC, natoms=4); C4H10->AddElement(elH, natoms=10); density = 0.3*mg/cm3; pressure = 2.*atmosphere; temperature = 500.*kelvin; G4Material* steam = new G4Material(name="Water steam ", density, ncomponents=1, kStateGas,temperature,pressure); steam->AddMaterial(H2O, fractionmass=1.); // // examples of vacuum // density = universe_mean_density; //from PhysicalConstants.h pressure = 3.e-18*pascal; temperature = 2.73*kelvin; new G4Material(name="Galactic", z=1., a=1.01*g/mole, density, kStateGas,temperature,pressure); density = 1.e-5*g/cm3; pressure = 2.e-2*bar; temperature = STP_Temperature; //from PhysicalConstants.h G4Material* beam = new G4Material(name="Beam ", density, ncomponents=1, kStateGas,temperature,pressure); beam->AddMaterial(Air, fractionmass=1.); // // Print the table of materials // G4cout << *(G4Material::GetMaterialTable()) << G4endl; // // print additional informations // G4cout << " Nuclear interaction length of Aluminium: " << Al->GetNuclearInterLength()/cm << " cm" << G4endl; G4cout << " Nuclear interaction length of Lead: " << Pb->GetNuclearInterLength()/cm << " cm" << G4endl; G4cout << " Nuclear interaction length of Water: " << H2O->GetNuclearInterLength()/cm << " cm" << G4endl; G4cout << " Nuclear interaction length of Aerogel: " << Aerog->GetNuclearInterLength()/cm << " cm" << G4endl; return EXIT_SUCCESS; }