// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4SandiaTableTest.cc,v 1.9 2006/06/29 19:13:17 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // // //////////////////////////////////////////////////////////////////////// // // This program illustrates the different ways to define photoabsorption // cross section according G4Sandiatable // // History: // // 15.09.99 V.Grichine, start from G4MaterialTest.cc // #include "G4ios.hh" #include #include "globals.hh" #include "G4UnitsTable.hh" #include "G4Material.hh" #include "G4SandiaTable.hh" int main() { // set output format G4cout.setf( std::ios::scientific, std::ios::floatfield ); G4String name, symbol; // a=mass of a mole; G4double a, z, density; // z=mean number of protons; G4int iz, n; // iz=nb of protons in an isotope; // n=nb of nucleons in an isotope; G4int ncomponents, natoms, nel ; G4double abundance, fractionmass ; G4double temperature, pressure ; G4UnitDefinition::BuildUnitsTable(); // // define Elements // a = 1.01*g/mole; G4Element* elHold = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); a = 1.01*g/mole; G4Isotope* ih1 = new G4Isotope("Hydrogen",iz=1,n=1,a); a = 2.01*g/mole; G4Isotope* ih2 = new G4Isotope("Deuterium",iz=1,n=2,a); G4Element* elH = new G4Element(name="Hydrogen",symbol="H",2); elH->AddIsotope(ih1,.999); elH->AddIsotope(ih2,.001); a = 12.01*g/mole; G4Element* elC = new G4Element(name="Carbon" ,symbol="C" , z= 6., a); a = 14.01*g/mole; G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 28.09*g/mole; G4Element* elSi = new G4Element(name="Silicon",symbol="Si" , z= 14., a); a = 55.85*g/mole; G4Element* elFe = new G4Element(name="Iron" ,symbol="Fe", z=26., a); a = 131.29*g/mole; G4Element* elXe = new G4Element(name="Xenon", symbol="Xe", z=54., a); a = 39.948*g/mole; G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); a = 19.00*g/mole; G4Element* elF = new G4Element(name="Fluorine", symbol="F", z=9., a); a = 69.723*g/mole; G4Element* elGa = new G4Element(name="Ga", symbol="Ga", z=31., a); a = 74.9216*g/mole; G4Element* elAs = new G4Element(name="As", symbol="As", z=33., a); // // define an Element from isotopes, by relative abundance // G4Isotope* U5 = new G4Isotope(name="U235", iz=92, n=235, a=235.01*g/mole); G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238, a=238.03*g/mole); G4Element* elU = new G4Element(name="enriched Uranium", symbol="U", ncomponents=2); elU->AddIsotope(U5, abundance= 90.*perCent); elU->AddIsotope(U8, abundance= 10.*perCent); // G4cout << *(G4Isotope::GetIsotopeTable()) << G4endl; // G4cout << *(G4Element::GetElementTable()) << G4endl; // // define simple materials // density = 2.700*g/cm3; a = 26.98*g/mole; G4Material* Al = new G4Material(name="Aluminium", z=13., a, density); density = 1.390*g/cm3; a = 39.95*g/mole; G4Material* lAr = new G4Material(name="liquidArgon", z=18., a, density); density = 8.960*g/cm3; a = 63.55*g/mole; G4Material* Cu = new G4Material(name="Copper" , z=29., a, density); density = 11.35*g/cm3; a = 207.19*g/mole; G4Material* Pb = new G4Material(name="Lead " , z=82., a, density); // // define a material from elements. case 1: chemical molecule // density = 1.000*g/cm3; G4Material* H2O = new G4Material(name="Water", density, ncomponents=2); H2O->AddElement(elH, natoms=2); H2O->AddElement(elO, natoms=1); density = 1.032*g/cm3; G4Material* Sci = new G4Material(name="Scintillator", density, ncomponents=2); Sci->AddElement(elC, natoms=9); Sci->AddElement(elH, natoms=10); density = 2.200*g/cm3; G4Material* SiO2 = new G4Material(name="quartz", density, ncomponents=2); SiO2->AddElement(elSi, natoms=1); SiO2->AddElement(elO , natoms=2); // // define a material from elements. case 2: mixture by fractional mass // density = 1.290*mg/cm3; G4Material* oldAir = new G4Material(name="Air " , density, ncomponents=2); oldAir->AddElement(elN, fractionmass=0.7); oldAir->AddElement(elO, fractionmass=0.3); // // define a material from elements and/or others materials (mixture of mixtures) // density = 0.200*g/cm3; G4Material* Aerog = new G4Material(name="Aerogel", density, ncomponents=3); Aerog->AddMaterial(SiO2, fractionmass=0.625); Aerog->AddMaterial(H2O , fractionmass=0.374); Aerog->AddElement (elC , fractionmass=0.1*perCent); // // examples of gas in non STP conditions // density = 27.*mg/cm3; pressure = 50.*atmosphere; temperature = 325.*kelvin; G4Material* CO2 = new G4Material(name="Carbonic gas", density, ncomponents=2, kStateGas,temperature,pressure); CO2->AddElement(elC, natoms=1); CO2->AddElement(elO, natoms=2); density = 0.3*mg/cm3; pressure = 2.*atmosphere; temperature = 500.*kelvin; G4Material* steam = new G4Material(name="Water steam ", density, ncomponents=1, kStateGas,temperature,pressure); steam->AddMaterial(H2O, fractionmass=1.); // // examples of vacuum // density = universe_mean_density; //from PhysicalConstants.h pressure = 3.e-18*pascal; temperature = 2.73*kelvin; new G4Material(name="Galactic", z=1., a=1.01*g/mole, density, kStateGas,temperature,pressure); density = 1.e-5*g/cm3; pressure = 2.e-2*bar; temperature = STP_Temperature; //from PhysicalConstants.h G4Material* beam = new G4Material(name="Beam ", density, ncomponents=1, kStateGas,temperature,pressure); beam->AddMaterial(oldAir, fractionmass=1.); // maylar density = 1.39*g/cm3; G4Material* Maylar = new G4Material(name="Maylar", density, nel=3); Maylar->AddElement(elO,2); Maylar->AddElement(elC,5); Maylar->AddElement(elH,4); // Kapton Dupont de Nemur (density: 1.396-1.430, get middle ) density = 1.413*g/cm3; G4Material* Kapton = new G4Material(name="Kapton", density, nel=4); Kapton->AddElement(elO,5); Kapton->AddElement(elC,22); Kapton->AddElement(elN,2); Kapton->AddElement(elH,10); // Germanium as detector material density = 5.323*g/cm3; a = 72.59*g/mole; G4Material* Ge = new G4Material(name="Ge", z=32., a, density); // GaAs detectors density = 5.32*g/cm3; G4Material* GaAs = new G4Material(name="GaAs",density, nel=2); GaAs->AddElement(elGa,1); GaAs->AddElement(elAs,1); // Diamond detectors density = 3.5*g/cm3; G4Material* Diamond = new G4Material(name="Diamond",density, nel=1); Diamond->AddElement(elC,1); G4double TRT_Xe_density = 5.485*mg/cm3; G4Material* TRT_Xe = new G4Material(name="TRT_Xe", TRT_Xe_density, nel=1, kStateGas,293.15*kelvin,1.*atmosphere); TRT_Xe->AddElement(elXe,1); G4double TRT_CO2_density = 1.842*mg/cm3; G4Material* TRT_CO2 = new G4Material(name="TRT_CO2", TRT_CO2_density, nel=2, kStateGas,293.15*kelvin,1.*atmosphere); TRT_CO2->AddElement(elC,1); TRT_CO2->AddElement(elO,2); G4double TRT_CF4_density = 3.9*mg/cm3; G4Material* TRT_CF4 = new G4Material(name="TRT_CF4", TRT_CF4_density, nel=2, kStateGas,293.15*kelvin,1.*atmosphere); TRT_CF4->AddElement(elC,1); TRT_CF4->AddElement(elF,4); G4double XeCO2CF4_density = 4.76*mg/cm3; G4Material* XeCO2CF4 = new G4Material(name="XeCO2CF4", XeCO2CF4_density, ncomponents=3, kStateGas,293.15*kelvin,1.*atmosphere); XeCO2CF4->AddMaterial(TRT_Xe,0.807); XeCO2CF4->AddMaterial(TRT_CO2,0.039); XeCO2CF4->AddMaterial(TRT_CF4,0.154); density = 0.935*g/cm3; G4Material* TRT_CH2 = new G4Material(name="TRT_CH2",density, nel=2); TRT_CH2->AddElement(elC,1); TRT_CH2->AddElement(elH,2); density = 0.059*g/cm3; G4Material* Radiator = new G4Material(name="Radiator",density, nel=2); Radiator->AddElement(elC,1); Radiator->AddElement(elH,2); density = 0.145*g/cm3; G4Material* CarbonFiber = new G4Material(name="CarbonFiber",density, nel=1); CarbonFiber->AddElement(elC,1); // Dry air (average composition) density = 1.25053*mg/cm3 ; // STP G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); Nitrogen->AddElement(elN, 2); density = 1.4289*mg/cm3 ; // STP G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); Oxygen->AddElement(elO, 2); density = 1.7836*mg/cm3 ; // STP G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); Argon->AddElement(elAr, 1); density = 1.2928*mg/cm3 ; // STP G4Material* Air = new G4Material(name="Air" , density, ncomponents=3); Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ; Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ; Air->AddMaterial( Argon, fractionmass = 0.0128 ) ; // Xenon as detector gas, STP density = 5.858*mg/cm3 ; a = 131.29*g/mole ; G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); // Helium as detector gas, STP density = 0.178*mg/cm3 ; a = 4.0026*g/mole ; G4Material* He = new G4Material(name="He",z=2., a, density ); // Neon as detector gas, STP density = 0.900*mg/cm3 ; a = 20.179*g/mole ; G4Material* Ne = new G4Material(name="Ne",z=10., a, density ); // Krypton as detector gas, STP density = 3.700*mg/cm3 ; a = 83.80*g/mole ; G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); // Carbone dioxide, CO2 STP density = 1.977*mg/cm3 ; G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2) ; CarbonDioxide->AddElement(elC,1) ; CarbonDioxide->AddElement(elO,2) ; // Metane, STP density = 0.7174*mg/cm3 ; G4Material* metane = new G4Material(name="CH4",density,nel=2) ; metane->AddElement(elC,1) ; metane->AddElement(elH,4) ; // Propane, STP density = 2.005*mg/cm3 ; G4Material* propane = new G4Material(name="C3H8",density,nel=2) ; propane->AddElement(elC,3) ; propane->AddElement(elH,8) ; // iso-Butane (methylpropane), STP density = 2.67*mg/cm3 ; G4Material* isobutane = new G4Material(name="isoC4H10",density,nel=2) ; isobutane->AddElement(elC,4) ; isobutane->AddElement(elH,10) ; // 87.5% Xe + 7.5% CH4 + 5% C3H8, 20 C, 1 atm density = 4.9196*mg/cm3 ; G4Material* XeCH4C3H8 = new G4Material(name="XeCH4C3H8" , density, ncomponents=3); XeCH4C3H8->AddMaterial( Xe, fractionmass = 0.971 ) ; XeCH4C3H8->AddMaterial( metane, fractionmass = 0.010 ) ; XeCH4C3H8->AddMaterial( propane, fractionmass = 0.019 ) ; // Propane in MWPC, 2 atm, 20 C // density = 3.758*mg/cm3 ; density = 3.736*mg/cm3 ; G4Material* propaneDet = new G4Material(name="detC3H8",density,nel=2) ; propaneDet->AddElement(elC,3) ; propaneDet->AddElement(elH,8) ; // 80% Ar + 20% CO2, STP density = 1.8223*mg/cm3 ; G4Material* Ar20CO2 = new G4Material(name="Ar20CO2" , density, ncomponents=2); Ar20CO2->AddMaterial( Argon, fractionmass = 0.783 ) ; Ar20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.217 ) ; // 93% Ar + 7% CH4, STP density = 1.709*mg/cm3 ; G4Material* Ar7CH4 = new G4Material(name="Ar7CH4" , density, ncomponents=2); Ar7CH4->AddMaterial( Argon, fractionmass = 0.971 ) ; Ar7CH4->AddMaterial( metane, fractionmass = 0.029 ) ; // 80% Xe + 20% CO2, STP density = 5.0818*mg/cm3 ; G4Material* Xe20CO2 = new G4Material(name="Xe20CO2" , density, ncomponents=2); Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ; Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ; // 80% Kr + 20% CO2, STP density = 3.601*mg/cm3 ; G4Material* Kr20CO2 = new G4Material(name="Kr20CO2" , density, ncomponents=2); Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ; Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ; // 80% He + 20% CO2, STP density = 0.5378*mg/cm3 ; G4Material* He20CO2 = new G4Material(name="He20CO2" , density, ncomponents=2); He20CO2->AddMaterial( He, fractionmass = 0.265 ) ; He20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.735 ) ; // // Print the table of materials // // G4cout << *(G4Material::GetMaterialTable()) << G4endl; // //////////////////////////////////////////////////////////////////////// // // // Checking Sandia table coefficients // G4int numberOfMat, iMat, matIndex, nbOfElements, sanIndex, row, iSan; G4double unit; G4String materialName = "Air"; static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); numberOfMat = theMaterialTable->size() ; for(iMat=0;iMatGetName() ) { matIndex = (*theMaterialTable)[iMat]->GetIndex() ; break ; } } // //////////////////////////////////////////////////////////////////////// // // Sandia cof according old PAI stuff // for(iMat=0;iMatGetName(); matIndex = (*theMaterialTable)[iMat]->GetIndex(); nbOfElements = (*theMaterialTable)[iMat]->GetNumberOfElements(); density = (*theMaterialTable)[iMat]->GetDensity(); G4cout< GetElement(iSan)->GetZ(); } G4SandiaTable sandia(matIndex) ; // sanIndex = sandia.SandiaIntervals(thisMaterialZ,nbOfElements); // sanIndex = sandia.SandiaMixing( thisMaterialZ , // (*theMaterialTable)[iMat]->GetFractionVector() , // nbOfElements,sanIndex) ; sanIndex = sandia.GetMaxInterval() ; G4cout<<"fMaxInterval = "< GetSandiaTable(); sanIndex = sanMatrix->GetMatNbOfIntervals(); G4cout<<"Sandia cof according ComputeMatSandiaMatrix()"<GetSandiaCofForMaterial(row,0)/keV; unit = cm2/g; for (iSan=1; iSan<5; iSan++) { unit *= keV; G4cout<<"\t"<<(sanMatrix->GetSandiaCofForMaterial(row,iSan)) /(density*unit); } G4cout<