// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: GVFlashHomoShowerTuning.hh,v 1.7 2006/06/29 19:14:04 gunter Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // // --------------------------------------------------------------- // GEANT 4 class header file // // GVFlashHomoShowerTuning // // Class description: // // Tuning class for GFlash homogeneous shower parameterisation. // Definitions: // : shower center of gravity // T: Depth at shower maximum // Ec: Critical energy // X0: Radiation length // y = E/Ec // // Homogeneous media: // Average shower profile // (1/E)(dE(t)/dt) = f(t) // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) // where Gamma is the Gamma function // // = alpha/beta // T = (alpha-1)/beta // and // T = ln(y) + t1 // alpha = a1+(a2+a3/Z)ln(y) // Author: J.P. Wellisch - October 2004 //--------------------------------------------------------------- #ifndef GVFlashHomoShowerTuning_hh #define GVFlashHomoShowerTuning_hh class GVFlashHomoShowerTuning { public: // with description virtual G4double ParAveT1(){ return -0.812;} // t1 virtual G4double ParAveA1(){ return 0.81; } // a1 virtual G4double ParAveA2(){ return 0.458; } // a2 virtual G4double ParAveA3(){ return 2.26; } // a3 virtual G4double ParSigLogT1(){ return -1.4;} // t1 virtual G4double ParSigLogT2(){ return 1.26;} // t2 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y)) virtual G4double ParSigLogA1(){ return -0.58;} // a1 virtual G4double ParSigLogA2(){ return 0.86; } // a2 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y)) virtual G4double ParRho1(){ return 0.705; } // r1 virtual G4double ParRho2(){ return -0.023;} // r2 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y) // Radial profiles // f(r) := (1/dE(t))(dE(t,r)/dr) // Ansatz: // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2, // 0 = alpha_s/beta_s // Ts = (alpha_s-1)/beta_s // and // Ts = T*(t1+t2*Z) // alpha_s = alpha*(a1+a2*Z) virtual G4double ParSpotT1(){ return 0.698; } // t1 virtual G4double ParSpotT2(){ return 0.00212;} // t2 virtual G4double ParSpotA1(){ return 0.639; } //a1 virtual G4double ParSpotA2(){ return 0.00334;} //a2 }; #endif