source: trunk/source/parameterisations/gflash/include/GVFlashHomoShowerTuning.hh@ 1049

Last change on this file since 1049 was 850, checked in by garnier, 17 years ago

geant4.8.2 beta

File size: 5.5 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: GVFlashHomoShowerTuning.hh,v 1.7 2006/06/29 19:14:04 gunter Exp $
28// GEANT4 tag $Name: HEAD $
29//
30//
31// ---------------------------------------------------------------
32// GEANT 4 class header file
33//
34// GVFlashHomoShowerTuning
35//
36// Class description:
37//
38// Tuning class for GFlash homogeneous shower parameterisation.
39// Definitions:
40// <t>: shower center of gravity
41// T: Depth at shower maximum
42// Ec: Critical energy
43// X0: Radiation length
44// y = E/Ec
45//
46// Homogeneous media:
47// Average shower profile
48// (1/E)(dE(t)/dt) = f(t)
49// = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
50// where Gamma is the Gamma function
51//
52// <t> = alpha/beta
53// T = (alpha-1)/beta
54// and
55// T = ln(y) + t1
56// alpha = a1+(a2+a3/Z)ln(y)
57
58// Author: J.P. Wellisch - October 2004
59//---------------------------------------------------------------
60#ifndef GVFlashHomoShowerTuning_hh
61#define GVFlashHomoShowerTuning_hh
62
63class GVFlashHomoShowerTuning
64{
65 public: // with description
66
67 virtual G4double ParAveT1(){ return -0.812;} // t1
68 virtual G4double ParAveA1(){ return 0.81; } // a1
69 virtual G4double ParAveA2(){ return 0.458; } // a2
70 virtual G4double ParAveA3(){ return 2.26; } // a3
71
72 virtual G4double ParSigLogT1(){ return -1.4;} // t1
73 virtual G4double ParSigLogT2(){ return 1.26;} // t2
74 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y))
75
76 virtual G4double ParSigLogA1(){ return -0.58;} // a1
77 virtual G4double ParSigLogA2(){ return 0.86; } // a2
78 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y))
79
80 virtual G4double ParRho1(){ return 0.705; } // r1
81 virtual G4double ParRho2(){ return -0.023;} // r2
82 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y)
83
84 // Radial profiles
85 // f(r) := (1/dE(t))(dE(t,r)/dr)
86 // Ansatz:
87 // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2,
88 // 0<p<1
89
90 virtual G4double ParRC1(){ return 0.0251; } // c1
91 virtual G4double ParRC2(){ return 0.00319; } // c2
92 virtual G4double ParRC3(){ return 0.1162; } // c3
93 virtual G4double ParRC4(){ return -0.000381;} // c4
94 // Rc (t/T)= z1 +z2*t/T
95 // z1 = c1+c2*ln(E/GeV)
96 // z2 = c3+c4*Z
97
98 virtual G4double ParRT1(){ return 0.659; } // t1
99 virtual G4double ParRT2(){ return -0.00309;} // t2
100 virtual G4double ParRT3(){ return 0.645; } // k2
101 virtual G4double ParRT4(){ return -2.59; } // k3
102 virtual G4double ParRT5(){ return 0.3585; } // t5
103 virtual G4double ParRT6(){ return 0.0412; } // t6
104 // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2)))
105 // k1 = t1+t2*Z
106 // k4 = t5+t6*ln(E/GeV)
107
108 virtual G4double ParWC1(){ return 2.632; } // c1
109 virtual G4double ParWC2(){ return -0.00094;} // c2
110 virtual G4double ParWC3(){ return 0.401; } // c3
111 virtual G4double ParWC4(){ return 0.00187; } // c4
112 virtual G4double ParWC5(){ return 1.313; } // c5
113 virtual G4double ParWC6(){ return -0.0686; } // c6
114 // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3))
115 // p1 = c1+c2*Z
116 // p2 = c3+c4*Z
117 // p3 = c5 + c6*ln(E/GeV)
118
119 virtual G4double ParSpotN1(){ return 93.; } // n1
120 virtual G4double ParSpotN2(){ return 0.876;} // n2
121 // Fluctuations on radial profiles through number of spots
122 // The total number of spots needed for a shower is
123 // Ns = n1*ln(Z)(E/GeV)**n2
124
125 // The number of spots per longitudinal interval is:
126 // (1/Ns)(dNs(t)/dt) = f(t)
127 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
128 // <t> = alpha_s/beta_s
129 // Ts = (alpha_s-1)/beta_s
130 // and
131 // Ts = T*(t1+t2*Z)
132 // alpha_s = alpha*(a1+a2*Z)
133
134 virtual G4double ParSpotT1(){ return 0.698; } // t1
135 virtual G4double ParSpotT2(){ return 0.00212;} // t2
136
137 virtual G4double ParSpotA1(){ return 0.639; } //a1
138 virtual G4double ParSpotA2(){ return 0.00334;} //a2
139
140};
141
142#endif
Note: See TracBrowser for help on using the repository browser.