// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4MuonDecayChannel.cc,v 1.17 2006/06/29 19:25:34 gunter Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // // ------------------------------------------------------------ // GEANT 4 class header file // // History: first implementation, based on object model of // 30 May 1997 H.Kurashige // // Fix bug in calcuration of electron energy in DecayIt 28 Feb. 01 H.Kurashige //2005 // M. Melissas ( melissas AT cppm.in2p3.fr) // J. Brunner ( brunner AT cppm.in2p3.fr) // Adding V-A fluxes for neutrinos using a new algortithm : // ------------------------------------------------------------ #include "G4ParticleDefinition.hh" #include "G4DecayProducts.hh" #include "G4VDecayChannel.hh" #include "G4MuonDecayChannel.hh" #include "Randomize.hh" #include "G4LorentzVector.hh" #include "G4LorentzRotation.hh" #include "G4RotationMatrix.hh" G4MuonDecayChannel::G4MuonDecayChannel(const G4String& theParentName, G4double theBR) :G4VDecayChannel("Muon Decay",1) { // set names for daughter particles if (theParentName == "mu+") { SetBR(theBR); SetParent("mu+"); SetNumberOfDaughters(3); SetDaughter(0, "e+"); SetDaughter(1, "nu_e"); SetDaughter(2, "anti_nu_mu"); } else if (theParentName == "mu-") { SetBR(theBR); SetParent("mu-"); SetNumberOfDaughters(3); SetDaughter(0, "e-"); SetDaughter(1, "anti_nu_e"); SetDaughter(2, "nu_mu"); } else { #ifdef G4VERBOSE if (GetVerboseLevel()>0) { G4cout << "G4MuonDecayChannel:: constructor :"; G4cout << " parent particle is not muon but "; G4cout << theParentName << G4endl; } #endif } } G4MuonDecayChannel::~G4MuonDecayChannel() { } G4DecayProducts *G4MuonDecayChannel::DecayIt(G4double) { // this version neglects muon polarization,and electron mass // assumes the pure V-A coupling // the Neutrinos are correctly V-A. #ifdef G4VERBOSE if (GetVerboseLevel()>1) G4cout << "G4MuonDecayChannel::DecayIt "; #endif if (parent == 0) FillParent(); if (daughters == 0) FillDaughters(); // parent mass G4double parentmass = parent->GetPDGMass(); //daughters'mass G4double daughtermass[3]; G4double sumofdaughtermass = 0.0; for (G4int index=0; index<3; index++){ daughtermass[index] = daughters[index]->GetPDGMass(); sumofdaughtermass += daughtermass[index]; } //create parent G4DynamicParticle at rest G4ThreeVector dummy; G4DynamicParticle * parentparticle = new G4DynamicParticle( parent, dummy, 0.0); //create G4Decayproducts G4DecayProducts *products = new G4DecayProducts(*parentparticle); delete parentparticle; // calculate daughter momentum G4double daughtermomentum[3]; // calcurate electron energy G4double xmax = (1.0+daughtermass[0]*daughtermass[0]/parentmass/parentmass); G4double x; G4double Ee,Ene; G4double gam; G4double EMax=parentmass/2-daughtermass[0]; //Generating Random Energy do { Ee=G4UniformRand(); do{ x=xmax*G4UniformRand(); gam=G4UniformRand(); }while (gam >x*(1.-x)); Ene=x; } while ( Ene < (1.-Ee)); G4double Enm=(2.-Ee-Ene); //initialisation of rotation parameters G4double costheta,sintheta,rphi,rtheta,rpsi; costheta= 1.-2./Ee-2./Ene+2./Ene/Ee; sintheta=std::sqrt(1.-costheta*costheta); rphi=twopi*G4UniformRand()*rad; rtheta=(std::acos(2.*G4UniformRand()-1.)); rpsi=twopi*G4UniformRand()*rad; G4RotationMatrix rot; rot.set(rphi,rtheta,rpsi); //electron 0 daughtermomentum[0]=std::sqrt(Ee*Ee*EMax*EMax+2.0*Ee*EMax * daughtermass[0]); G4ThreeVector direction0(0.0,0.0,1.0); direction0 *= rot; G4DynamicParticle * daughterparticle = new G4DynamicParticle ( daughters[0], direction0 * daughtermomentum[0]); products->PushProducts(daughterparticle); //electronic neutrino 1 daughtermomentum[1]=std::sqrt(Ene*Ene*EMax*EMax+2.0*Ene*EMax * daughtermass[1]); G4ThreeVector direction1(sintheta,0.0,costheta); direction1 *= rot; G4DynamicParticle * daughterparticle1 = new G4DynamicParticle ( daughters[1], direction1 * daughtermomentum[1]); products->PushProducts(daughterparticle1); //muonnic neutrino 2 daughtermomentum[2]=std::sqrt(Enm*Enm*EMax*EMax +2.0*Enm*EMax*daughtermass[2]); G4ThreeVector direction2(-Ene/Enm*sintheta,0,-Ee/Enm-Ene/Enm*costheta); direction2 *= rot; G4DynamicParticle * daughterparticle2 = new G4DynamicParticle ( daughters[2], direction2 * daughtermomentum[2]); products->PushProducts(daughterparticle2); // output message #ifdef G4VERBOSE if (GetVerboseLevel()>1) { G4cout << "G4MuonDecayChannel::DecayIt "; G4cout << " create decay products in rest frame " <DumpInfo(); } #endif return products; }