// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4NucleiProperties.cc,v 1.22 2010/05/20 01:01:07 kurasige Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // // // ------------------------------------------------------------ // GEANT 4 class header file // // ------------------------------------------------------------ // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // Migrate into particles category by H.Kurashige (17 Nov. 98) // Added Shell-Pairing corrections to the Cameron mass // excess formula by V.Lara (9 May 99) // 090331 Migrate to AME03 by Koi, Tatsumi #include "G4NucleiProperties.hh" G4double G4NucleiProperties::mass_proton = -1.; G4double G4NucleiProperties::mass_neutron = -1.; G4double G4NucleiProperties::mass_deuteron = -1.; G4double G4NucleiProperties::mass_triton = -1.; G4double G4NucleiProperties::mass_alpha = -1.; G4double G4NucleiProperties::mass_He3 = -1.; G4double G4NucleiProperties::GetNuclearMass(const G4double A, const G4double Z) { G4double mass=0.0; if (std::fabs(A - G4int(A)) > 1.e-10) { mass = NuclearMass(A,Z); } else { // use mass table G4int iZ = G4int(Z); G4int iA = G4int(A); mass =GetNuclearMass(iA,iZ); } return mass; } G4double G4NucleiProperties::GetNuclearMass(const G4int A, const G4int Z) { if (mass_proton <= 0.0 ) { G4ParticleDefinition * nucleus = 0; nucleus = G4ParticleTable::GetParticleTable()->FindParticle("proton"); // proton if (nucleus!=0) mass_proton = nucleus->GetPDGMass(); nucleus = G4ParticleTable::GetParticleTable()->FindParticle("neutron"); // neutron if (nucleus!=0) mass_neutron = nucleus->GetPDGMass(); nucleus = G4ParticleTable::GetParticleTable()->FindParticle("deuteron"); // deuteron if (nucleus!=0) mass_deuteron = nucleus->GetPDGMass(); nucleus = G4ParticleTable::GetParticleTable()->FindParticle("triton"); // triton if (nucleus!=0) mass_triton = nucleus->GetPDGMass(); nucleus = G4ParticleTable::GetParticleTable()->FindParticle("alpha"); // alpha if (nucleus!=0) mass_alpha = nucleus->GetPDGMass(); nucleus = G4ParticleTable::GetParticleTable()->FindParticle("He3"); // He3 if (nucleus!=0) mass_He3 = nucleus->GetPDGMass(); } if (A < 1 || Z < 0 || Z > A) { #ifdef G4VERBOSE if (G4ParticleTable::GetParticleTable()->GetVerboseLevel()>0) { G4cerr << "G4NucleiProperties::GetNuclearMass: Wrong values for A = " << A << " and Z = " << Z << G4endl; } #endif return 0.0; } G4double mass= -1.; if ( (Z<=2) ) { // light nuclei if ( (Z==1)&&(A==1) ) { mass = mass_proton; } else if ( (Z==0)&&(A==1) ) { mass = mass_neutron; } else if ( (Z==1)&&(A==2) ) { mass = mass_deuteron; } else if ( (Z==1)&&(A==3) ) { mass = mass_triton; } else if ( (Z==2)&&(A==4) ) { mass = mass_alpha; } else if ( (Z==2)&&(A==3) ) { mass = mass_He3; } } if (mass < 0.) { if (G4NucleiPropertiesTableAME03::IsInTable(Z,A)) { // AME 03 table mass = G4NucleiPropertiesTableAME03::GetNuclearMass(Z,A); } else if (G4NucleiPropertiesTheoreticalTable::IsInTable(Z,A)){ // Theoretical table mass = G4NucleiPropertiesTheoreticalTable::GetNuclearMass(Z,A); } else { mass = NuclearMass(G4double(A),G4double(Z)); } } if (mass < 0.) mass = 0.0; return mass; } G4bool G4NucleiProperties::IsInStableTable(const G4double A, const G4double Z) { G4int iA = G4int(A); G4int iZ = G4int(Z); return IsInStableTable(iA, iZ); } G4bool G4NucleiProperties::IsInStableTable(const G4int A, const int Z) { if (A < 1 || Z < 0 || Z > A) { #ifdef G4VERBOSE if (G4ParticleTable::GetParticleTable()->GetVerboseLevel()>0) { G4cerr << "G4NucleiProperties::IsInStableTable: Wrong values for A = " << A << " and Z = " << Z << G4endl; } #endif return false; } return G4NucleiPropertiesTableAME03::IsInTable(Z,A); } G4double G4NucleiProperties::GetMassExcess(const G4double A, const G4double Z) { G4int iA = G4int(A); G4int iZ = G4int(Z); return GetMassExcess(iA,iZ); } G4double G4NucleiProperties::GetMassExcess(const G4int A, const G4int Z) { if (A < 1 || Z < 0 || Z > A) { #ifdef G4VERBOSE if (G4ParticleTable::GetParticleTable()->GetVerboseLevel()>0) { G4cerr << "G4NucleiProperties::GetMassExccess: Wrong values for A = " << A << " and Z = " << Z << G4endl; } #endif return 0.0; } else { if (G4NucleiPropertiesTableAME03::IsInTable(Z,A)){ return G4NucleiPropertiesTableAME03::GetMassExcess(Z,A); } else if (G4NucleiPropertiesTheoreticalTable::IsInTable(Z,A)){ return G4NucleiPropertiesTheoreticalTable::GetMassExcess(Z,A); } else { return MassExcess(A,Z); } } } G4double G4NucleiProperties::GetAtomicMass(const G4double A, const G4double Z) { if (A < 1 || Z < 0 || Z > A) { #ifdef G4VERBOSE if (G4ParticleTable::GetParticleTable()->GetVerboseLevel()>0) { G4cerr << "G4NucleiProperties::GetAtomicMass: Wrong values for A = " << A << " and Z = " << Z << G4endl; } #endif return 0.0; } else if (std::fabs(A - G4int(A)) > 1.e-10) { return AtomicMass(A,Z); } else { G4int iA = G4int(A); G4int iZ = G4int(Z); if (G4NucleiPropertiesTableAME03::IsInTable(iZ,iA)) { return G4NucleiPropertiesTableAME03::GetAtomicMass(iZ,iA); } else if (G4NucleiPropertiesTheoreticalTable::IsInTable(iZ,iA)){ return G4NucleiPropertiesTheoreticalTable::GetAtomicMass(iZ,iA); } else { return AtomicMass(A,Z); } } } G4double G4NucleiProperties::GetBindingEnergy(const G4double A, const G4double Z) { G4int iA = G4int(A); G4int iZ = G4int(Z); return GetBindingEnergy(iA,iZ); } G4double G4NucleiProperties::GetBindingEnergy(const G4int A, const G4int Z) { if (A < 1 || Z < 0 || Z > A) { #ifdef G4VERBOSE if (G4ParticleTable::GetParticleTable()->GetVerboseLevel()>0) { G4cerr << "G4NucleiProperties::GetMassExccess: Wrong values for A = " << A << " and Z = " << Z << G4endl; } #endif return 0.0; } else { if (G4NucleiPropertiesTableAME03::IsInTable(Z,A)) { return G4NucleiPropertiesTableAME03::GetBindingEnergy(Z,A); } else if (G4NucleiPropertiesTheoreticalTable::IsInTable(Z,A)) { return G4NucleiPropertiesTheoreticalTable::GetBindingEnergy(Z,A); }else { return BindingEnergy(A,Z); } } } G4double G4NucleiProperties::MassExcess(G4double A, G4double Z) { return GetAtomicMass(A,Z) - A*amu_c2; } G4double G4NucleiProperties::AtomicMass(G4double A, G4double Z) { const G4double hydrogen_mass_excess = G4NucleiPropertiesTableAME03::GetMassExcess(1,1); const G4double neutron_mass_excess = G4NucleiPropertiesTableAME03::GetMassExcess(0,1); G4double mass = (A-Z)*neutron_mass_excess + Z*hydrogen_mass_excess - BindingEnergy(A,Z) + A*amu_c2; return mass; } G4double G4NucleiProperties::NuclearMass(G4double A, G4double Z) { if (A < 1 || Z < 0 || Z > A) { #ifdef G4VERBOSE if (G4ParticleTable::GetParticleTable()->GetVerboseLevel()>0) { G4cerr << "G4NucleiProperties::NuclearMass: Wrong values for A = " << A << " and Z = " << Z << G4endl; } #endif return 0.0; } G4double mass = AtomicMass(A,Z); // atomic mass is converted to nuclear mass according formula in AME03 mass -= Z*electron_mass_c2; mass += ( 14.4381*std::pow ( Z , 2.39 ) + 1.55468*1e-6*std::pow ( Z , 5.35 ) )*eV; return mass; } G4double G4NucleiProperties::BindingEnergy(G4double A, G4double Z) { // // Weitzsaecker's Mass formula // G4int Npairing = G4int(A-Z)%2; // pairing G4int Zpairing = G4int(Z)%2; G4double binding = - 15.67*A // nuclear volume + 17.23*std::pow(A,2./3.) // surface energy + 93.15*((A/2.-Z)*(A/2.-Z))/A // asymmetry + 0.6984523*Z*Z*std::pow(A,-1./3.); // coulomb if( Npairing == Zpairing ) binding += (Npairing+Zpairing-1) * 12.0 / std::sqrt(A); // pairing return -binding*MeV; }