source: trunk/source/processes/cuts/src/G4VRangeToEnergyConverter.cc @ 961

Last change on this file since 961 was 961, checked in by garnier, 15 years ago

update processes

File size: 16.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4VRangeToEnergyConverter.cc,v 1.9 2008/03/02 10:52:56 kurasige Exp $
28// GEANT4 tag $Name: geant4-09-02-ref-02 $
29//
30//
31// --------------------------------------------------------------
32//      GEANT 4 class implementation file/  History:
33//    5 Oct. 2002, H.Kuirashige : Structure created based on object model
34// --------------------------------------------------------------
35
36#include "G4VRangeToEnergyConverter.hh"
37#include "G4ParticleTable.hh"
38#include "G4Material.hh"
39#include "G4PhysicsLogVector.hh"
40
41#include "G4ios.hh"
42
43// energy range
44G4double  G4VRangeToEnergyConverter::LowestEnergy = 0.99e-3*MeV;
45G4double  G4VRangeToEnergyConverter::HighestEnergy = 100.0e6*MeV;
46
47G4VRangeToEnergyConverter::G4VRangeToEnergyConverter():
48  theParticle(0), theLossTable(0), NumberOfElements(0), TotBin(200),
49  verboseLevel(1)
50{
51}
52
53G4VRangeToEnergyConverter::G4VRangeToEnergyConverter(const G4VRangeToEnergyConverter& right)
54{
55  *this = right;
56}
57
58G4VRangeToEnergyConverter & G4VRangeToEnergyConverter::operator=(const G4VRangeToEnergyConverter &right)
59{
60  if (this == &right) return *this;
61  if (theLossTable) {
62    theLossTable->clearAndDestroy();
63    delete theLossTable;
64    theLossTable=0;
65 }
66
67  NumberOfElements = right.NumberOfElements;
68  TotBin = right.TotBin;
69  theParticle = right.theParticle;
70  verboseLevel = right.verboseLevel;
71 
72  // create the loss table
73  theLossTable = new G4LossTable();
74  theLossTable->reserve(G4Element::GetNumberOfElements()); 
75  // fill the loss table
76  for (size_t j=0; j<size_t(NumberOfElements); j++){
77    G4LossVector* aVector= new
78            G4LossVector(LowestEnergy, HighestEnergy, TotBin);
79    for (size_t i=0; i<size_t(TotBin); i++) {
80      G4double Value = (*((*right.theLossTable)[j]))[i];
81      aVector->PutValue(i,Value);
82    }
83    theLossTable->insert(aVector);
84  }
85  return *this;
86}
87
88
89G4VRangeToEnergyConverter::~G4VRangeToEnergyConverter()
90{ 
91  if (theLossTable) { 
92    theLossTable->clearAndDestroy();
93    delete theLossTable;
94  }
95  theLossTable=0;
96}
97
98G4int G4VRangeToEnergyConverter::operator==(const G4VRangeToEnergyConverter &right) const
99{
100  return this == &right;
101}
102
103G4int G4VRangeToEnergyConverter::operator!=(const G4VRangeToEnergyConverter &right) const
104{
105  return this != &right;
106}
107
108
109// **********************************************************************
110// ************************* Convert  ***********************************
111// **********************************************************************
112G4double G4VRangeToEnergyConverter::Convert(G4double rangeCut, 
113                                            const G4Material* material) 
114{
115  G4double Mass   = theParticle->GetPDGMass();
116  G4double theKineticEnergyCuts = 0.;
117 
118  // Build the energy loss table
119  BuildLossTable();
120 
121  // Build range vector for every material, convert cut into energy-cut,
122  // fill theKineticEnergyCuts and delete the range vector
123  G4double tune = 0.025*mm*g/cm3 ,lowen = 30.*keV ; 
124
125  G4int idx = material->GetIndex(); 
126  G4double density = material->GetDensity() ;
127  if(density > 0.) {
128    G4RangeVector* rangeVector = new G4RangeVector(LowestEnergy, HighestEnergy, TotBin);
129    BuildRangeVector(material, HighestEnergy, Mass, rangeVector);
130    theKineticEnergyCuts = ConvertCutToKineticEnergy(rangeVector, rangeCut, idx);
131
132    if( ((theParticle->GetParticleName()=="e-")||(theParticle->GetParticleName()=="e+"))
133           && (theKineticEnergyCuts < lowen) ) 
134
135    //  corr. should be switched on smoothly   
136    { theKineticEnergyCuts /= (1.+(1.-theKineticEnergyCuts/lowen)*
137                                    tune/(rangeCut*density)); }
138    if(theKineticEnergyCuts < LowestEnergy) {
139      theKineticEnergyCuts = LowestEnergy ;
140    }
141    delete rangeVector;
142  }
143
144  return theKineticEnergyCuts;
145}
146
147// **********************************************************************
148// ************************ SetEnergyRange  *****************************
149// **********************************************************************
150void G4VRangeToEnergyConverter::SetEnergyRange(G4double lowedge, 
151                                               G4double highedge)
152{
153  // check LowestEnergy/ HighestEnergy
154  if ( (lowedge<0.0)||(highedge<=lowedge) ){
155    G4cerr << "Error in G4VRangeToEnergyConverter::SetEnergyRange";
156    G4cerr << " :  illegal energy range" << "(" << lowedge/GeV;
157    G4cerr << "," << highedge/GeV << ") [GeV]" << G4endl;
158  } else {
159    LowestEnergy = lowedge;
160    HighestEnergy = highedge;
161  }
162}
163
164
165G4double G4VRangeToEnergyConverter::GetLowEdgeEnergy()
166{
167  return LowestEnergy;
168}
169   
170
171G4double G4VRangeToEnergyConverter::GetHighEdgeEnergy()
172{
173  return HighestEnergy;
174}
175
176// **********************************************************************
177// ************************ RangeLinSimpson *****************************
178// **********************************************************************
179G4double G4VRangeToEnergyConverter::RangeLinSimpson(
180                                     G4int numberOfElement,
181                                     const G4ElementVector* elementVector,
182                                     const G4double* atomicNumDensityVector,
183                                     G4double aMass,   
184                                     G4double taulow, G4double tauhigh, G4int nbin)
185{
186  // Simpson numerical integration, linear binning
187  G4double dtau = (tauhigh-taulow)/nbin;
188  G4double Value=0.;
189  for (size_t i=0; i<=size_t(nbin); i++){
190    G4double taui=taulow+dtau*i;
191    G4double ti=aMass*taui;
192    G4double lossi=0.;
193    size_t nEl = (size_t)(numberOfElement);
194    for (size_t j=0; j<nEl; j++) {
195      G4bool isOut;
196      G4int IndEl = (*elementVector)[j]->GetIndex();
197      lossi += atomicNumDensityVector[j]*
198              (*theLossTable)[IndEl]->GetValue(ti,isOut);
199   }
200    if ( i==0 ) {
201      Value += 0.5/lossi;
202    } else {
203      if ( i<size_t(nbin) ) Value += 1./lossi;
204      else            Value += 0.5/lossi;
205    }
206  }
207  Value *= aMass*dtau;
208
209  return Value;
210}
211
212
213// **********************************************************************
214// ************************ RangeLogSimpson *****************************
215// **********************************************************************
216G4double G4VRangeToEnergyConverter::RangeLogSimpson(
217                                     G4int numberOfElement,
218                                     const G4ElementVector* elementVector,
219                                     const G4double* atomicNumDensityVector,
220                                     G4double aMass,   
221                                     G4double ltaulow, G4double ltauhigh,
222                                     G4int nbin)
223{
224  // Simpson numerical integration, logarithmic binning
225  if(nbin<0) nbin = TotBin;
226  G4double ltt = ltauhigh-ltaulow;
227  G4double dltau = ltt/nbin;
228  G4double Value = 0.;
229  for (size_t i=0; i<=size_t(nbin); i++){
230    G4double ui = ltaulow+dltau*i;
231    G4double taui = std::exp(ui);
232    G4double ti = aMass*taui;
233    G4double lossi = 0.;
234    size_t nEl = (size_t)(numberOfElement);
235
236    for (size_t j=0; j<nEl; j++) {
237      G4bool isOut;
238      G4int IndEl = (*elementVector)[j]->GetIndex();
239      lossi += atomicNumDensityVector[j]*
240              (*theLossTable)[IndEl]->GetValue(ti,isOut);
241    }
242    if ( i==0 ) {
243      Value +=  0.5*taui/lossi;
244    } else {
245      if ( i<size_t(nbin) ) Value += taui/lossi;
246      else Value +=  0.5*taui/lossi;
247    }
248  }
249  Value *= aMass*dltau;
250
251  return Value;
252}
253
254// **********************************************************************
255// ************************ BuildLossTable ******************************
256// **********************************************************************
257//   create Energy Loss Table for charged particles
258//   (cross section tabel for neutral )
259void G4VRangeToEnergyConverter::BuildLossTable()
260{
261   //  Build dE/dx tables for elements
262  if (size_t(NumberOfElements) != G4Element::GetNumberOfElements()) {
263    if (theLossTable!=0) {
264      theLossTable->clearAndDestroy();
265      delete theLossTable;
266    }
267    theLossTable =0; 
268    NumberOfElements = 0;
269  }
270
271  if (NumberOfElements ==0) {
272    NumberOfElements = G4Element::GetNumberOfElements();
273    theLossTable = new G4LossTable();
274    theLossTable->reserve(G4Element::GetNumberOfElements());
275#ifdef G4VERBOSE
276    if (GetVerboseLevel()>3) {
277      G4cout << "G4VRangeToEnergyConverter::BuildLossTable() ";
278      G4cout << "Create theLossTable[" << theLossTable << "]";
279      G4cout << " NumberOfElements=" << NumberOfElements <<G4endl;
280    }
281#endif
282 
283
284    // fill the loss table
285    for (size_t j=0; j<size_t(NumberOfElements); j++){
286      G4double Value;
287      G4LossVector* aVector= new
288        G4LossVector(LowestEnergy, HighestEnergy, TotBin);
289      for (size_t i=0; i<size_t(TotBin); i++) {
290        Value = ComputeLoss(  (*G4Element::GetElementTable())[j]->GetZ(),
291                              aVector->GetLowEdgeEnergy(i)
292                              );
293        aVector->PutValue(i,Value);
294      }
295      theLossTable->insert(aVector);
296    }
297  }
298}
299
300// **********************************************************************
301// ************************** ComputeLoss *******************************
302// **********************************************************************
303G4double G4VRangeToEnergyConverter::ComputeLoss(G4double AtomicNumber,
304                                                G4double KineticEnergy) const
305{
306  //  calculate dE/dx
307
308  static G4double Z; 
309  static G4double ionpot, tau0, taum, taul, ca, cba, cc;
310
311  G4double  z2Particle = theParticle->GetPDGCharge()/eplus;
312  z2Particle *=  z2Particle;
313  if (z2Particle < 0.1) return 0.0;
314
315  if( std::abs(AtomicNumber-Z)>0.1 ){
316    // recalculate constants
317    Z = AtomicNumber;
318    G4double Z13 = std::exp(std::log(Z)/3.);
319    tau0 = 0.1*Z13*MeV/proton_mass_c2;
320    taum = 0.035*Z13*MeV/proton_mass_c2;
321    taul = 2.*MeV/proton_mass_c2;
322    ionpot = 1.6e-5*MeV*std::exp(0.9*std::log(Z));
323    cc = (taul+1.)*(taul+1.)*std::log(2.*electron_mass_c2*taul*(taul+2.)/ionpot)/(taul*(taul+2.))-1.;
324    cc = 2.*twopi_mc2_rcl2*Z*cc*std::sqrt(taul);
325    ca = cc/((1.-0.5*std::sqrt(tau0/taum))*tau0);
326    cba = -0.5/std::sqrt(taum);
327  }
328
329  G4double tau = KineticEnergy/theParticle->GetPDGMass();
330  G4double dEdx;
331  if ( tau <= tau0 ) {
332    dEdx = ca*(std::sqrt(tau)+cba*tau);
333  } else {
334    if( tau <= taul ) {
335      dEdx = cc/std::sqrt(tau);
336    } else {
337      dEdx = (tau+1.)*(tau+1.)*
338             std::log(2.*electron_mass_c2*tau*(tau+2.)/ionpot)/(tau*(tau+2.))-1.;
339      dEdx = 2.*twopi_mc2_rcl2*Z*dEdx;
340    }
341  }
342  return dEdx*z2Particle ;
343}
344
345// **********************************************************************
346// ************************ BuildRangeVector ****************************
347// **********************************************************************
348void G4VRangeToEnergyConverter::BuildRangeVector(
349                                  const G4Material* aMaterial,
350                                  G4double       maxEnergy,
351                                  G4double       aMass,
352                                  G4RangeVector* rangeVector)
353{
354  //  create range vector for a material
355  const G4double tlim=2.*MeV, t1=0.1*MeV, t2=0.025*MeV; 
356  const G4int  maxnbint=100;
357 
358  const G4ElementVector* elementVector = aMaterial->GetElementVector();
359  const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector();
360
361  G4int NumEl = aMaterial->GetNumberOfElements();
362
363  // calculate parameters of the low energy part first
364  G4double loss1=0.;
365  G4double loss2=0.;
366  size_t i;
367  for (i=0; i<size_t(NumEl); i++) {
368    G4bool isOut;
369    G4int IndEl = (*elementVector)[i]->GetIndex();
370    loss1 += atomicNumDensityVector[i]*
371            (*theLossTable)[IndEl]->GetValue(t1,isOut);
372    loss2 += atomicNumDensityVector[i]*
373            (*theLossTable)[IndEl]->GetValue(t2,isOut);
374  }
375  G4double tau1 = t1/proton_mass_c2;
376  G4double sqtau1 = std::sqrt(tau1);
377  G4double ca = (4.*loss2-loss1)/sqtau1;
378  G4double cb = (2.*loss1-4.*loss2)/tau1;
379  G4double cba = cb/ca;
380  G4double taulim = tlim/proton_mass_c2;
381  G4double taumax = maxEnergy/aMass;
382  G4double ltaumax = std::log(taumax);
383
384  // now we can fill the range vector....
385  G4double  rmax = 0.0;
386  for (i=0; i<size_t(TotBin); i++) {
387    G4double  LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i);
388    G4double  tau = LowEdgeEnergy/aMass;
389    G4double  Value;
390 
391    if ( tau <= tau1 ){
392      Value =2.*aMass*std::log(1.+cba*std::sqrt(tau))/cb;
393    } else {
394      Value = 2.*aMass*std::log(1.+cba*sqtau1)/cb;
395      if ( tau <= taulim ) {
396        G4int nbin = (G4int)(maxnbint*(tau-tau1)/(taulim-tau1));
397        if ( nbin<1 ) nbin = 1;
398        Value += RangeLinSimpson( NumEl, elementVector,
399                                  atomicNumDensityVector, aMass,
400                                  tau1, tau, nbin);
401      } else {
402        Value += RangeLinSimpson( NumEl, elementVector,
403                                  atomicNumDensityVector, aMass,
404                                  tau1, taulim, maxnbint);
405        G4double ltaulow  = std::log(taulim);
406        G4double ltauhigh = std::log(tau);
407        G4int nbin = (G4int)(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow));
408        if ( nbin<1 ) nbin = 1;
409        Value += RangeLogSimpson(NumEl, elementVector,
410                                 atomicNumDensityVector, aMass,
411                                 ltaulow, ltauhigh, nbin);
412      }
413    }
414    rangeVector->PutValue(i,Value); 
415    if (rmax < Value) rmax = Value;
416  }
417}
418
419// **********************************************************************
420// ****************** ConvertCutToKineticEnergy *************************
421// **********************************************************************
422G4double G4VRangeToEnergyConverter::ConvertCutToKineticEnergy(
423                                    G4RangeVector* rangeVector,
424                                    G4double       theCutInLength, 
425                                    size_t         materialIndex
426                                                              ) const
427{
428  const G4double epsilon=0.01;
429
430  //  find max. range and the corresponding energy (rmax,Tmax)
431  G4double rmax= -1.e10*mm;
432  G4double Tmax= HighestEnergy;
433  G4double fac = std::exp( std::log(HighestEnergy/LowestEnergy)/TotBin );
434  G4double T=LowestEnergy/fac;
435  G4bool isOut;
436
437  for (size_t ibin=0; ibin<size_t(TotBin); ibin++) {
438    T *= fac;
439    G4double r=rangeVector->GetValue(T,isOut);
440    if ( r>rmax )    {
441       Tmax=T;
442       rmax=r;
443    }
444  }
445
446  // check cut in length is smaller than range max
447  if ( theCutInLength >= rmax )  {
448#ifdef G4VERBOSE
449    if (GetVerboseLevel()>2) {
450      G4cout << "G4VRangeToEnergyConverter::ConvertCutToKineticEnergy ";
451      G4cout << "  for " << theParticle->GetParticleName() << G4endl;
452      G4cout << "The cut in range [" << theCutInLength/mm << " (mm)]  ";
453      G4cout << " is too big  " ;
454      G4cout << " for material  idx=" << materialIndex <<G4endl; 
455      G4cout << "The cut in energy is set" << DBL_MAX/GeV << "GeV " <<G4endl; 
456    }
457#endif
458    return  DBL_MAX;
459  }
460 
461  // convert range to energy
462  G4double T1 = LowestEnergy;
463  G4double r1 = rangeVector->GetValue(T1,isOut);
464  if ( theCutInLength <= r1 )
465  {
466    return T1;
467  }
468
469  G4double T2 = Tmax ;
470  G4double T3 = std::sqrt(T1*T2);
471  G4double r3 = rangeVector->GetValue(T3,isOut);
472  while ( std::abs(1.-r3/theCutInLength)>epsilon ) {
473    if ( theCutInLength <= r3 ) {
474      T2 = T3;
475    } else {
476      T1 = T3;
477    }
478    T3 = std::sqrt(T1*T2);
479    r3 = rangeVector->GetValue(T3,isOut);
480  }
481
482  return T3;
483}
484
Note: See TracBrowser for help on using the repository browser.