| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4AdjointBremsstrahlungModel.cc,v 1.4 2009/11/20 10:31:20 ldesorgh Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | #include "G4AdjointBremsstrahlungModel.hh"
|
|---|
| 30 | #include "G4AdjointCSManager.hh"
|
|---|
| 31 | #include "G4Integrator.hh"
|
|---|
| 32 | #include "G4TrackStatus.hh"
|
|---|
| 33 | #include "G4ParticleChange.hh"
|
|---|
| 34 | #include "G4AdjointElectron.hh"
|
|---|
| 35 | #include "G4AdjointGamma.hh"
|
|---|
| 36 | #include "G4Electron.hh"
|
|---|
| 37 |
|
|---|
| 38 | #include "G4Timer.hh"
|
|---|
| 39 | //#include "G4PenelopeBremsstrahlungModel.hh"
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 43 | //
|
|---|
| 44 | G4AdjointBremsstrahlungModel::G4AdjointBremsstrahlungModel():
|
|---|
| 45 | G4VEmAdjointModel("AdjointeBremModel"),
|
|---|
| 46 | MigdalConstant(classic_electr_radius*electron_Compton_length*electron_Compton_length*4.0*pi)
|
|---|
| 47 | {
|
|---|
| 48 | SetUseMatrix(false);
|
|---|
| 49 | SetUseMatrixPerElement(false);
|
|---|
| 50 |
|
|---|
| 51 | theDirectStdBremModel = new G4eBremsstrahlungModel(G4Electron::Electron(),"TheDirecteBremModel");
|
|---|
| 52 | theDirectEMModel=theDirectStdBremModel;
|
|---|
| 53 | // theDirectPenelopeBremModel =0;
|
|---|
| 54 |
|
|---|
| 55 | SetApplyCutInRange(true);
|
|---|
| 56 | highKinEnergy= 100.*TeV;
|
|---|
| 57 | lowKinEnergy = 1.0*keV;
|
|---|
| 58 | theTimer =new G4Timer();
|
|---|
| 59 |
|
|---|
| 60 | theAdjEquivOfDirectPrimPartDef =G4AdjointElectron::AdjointElectron();
|
|---|
| 61 | theAdjEquivOfDirectSecondPartDef=G4AdjointGamma::AdjointGamma();
|
|---|
| 62 | theDirectPrimaryPartDef=G4Electron::Electron();
|
|---|
| 63 | second_part_of_same_type=false;
|
|---|
| 64 |
|
|---|
| 65 | /*UsePenelopeModel=false;
|
|---|
| 66 | if (UsePenelopeModel) {
|
|---|
| 67 | G4PenelopeBremsstrahlungModel* thePenelopeModel = new G4PenelopeBremsstrahlungModel(G4Electron::Electron(),"PenelopeBrem");
|
|---|
| 68 | theEmModelManagerForFwdModels = new G4EmModelManager();
|
|---|
| 69 | isPenelopeModelInitialised = false;
|
|---|
| 70 | G4VEmFluctuationModel* f=0;
|
|---|
| 71 | G4Region* r=0;
|
|---|
| 72 | theDirectEMModel=thePenelopeModel;
|
|---|
| 73 | theEmModelManagerForFwdModels->AddEmModel(1, thePenelopeModel, f, r);
|
|---|
| 74 | }
|
|---|
| 75 | */
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 |
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 82 | //
|
|---|
| 83 | void G4AdjointBremsstrahlungModel::SampleSecondaries(const G4Track& aTrack,
|
|---|
| 84 | G4bool IsScatProjToProjCase,
|
|---|
| 85 | G4ParticleChange* fParticleChange)
|
|---|
| 86 | {
|
|---|
| 87 | if (!UseMatrix) return RapidSampleSecondaries(aTrack,IsScatProjToProjCase,fParticleChange);
|
|---|
| 88 |
|
|---|
| 89 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 90 | DefineCurrentMaterial(aTrack.GetMaterialCutsCouple());
|
|---|
| 91 |
|
|---|
| 92 |
|
|---|
| 93 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 94 | G4double adjointPrimTotalEnergy = theAdjointPrimary->GetTotalEnergy();
|
|---|
| 95 |
|
|---|
| 96 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 97 | return;
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 | G4double projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy,
|
|---|
| 101 | IsScatProjToProjCase);
|
|---|
| 102 | //Weight correction
|
|---|
| 103 | //-----------------------
|
|---|
| 104 | CorrectPostStepWeight(fParticleChange,
|
|---|
| 105 | aTrack.GetWeight(),
|
|---|
| 106 | adjointPrimKinEnergy,
|
|---|
| 107 | projectileKinEnergy,
|
|---|
| 108 | IsScatProjToProjCase);
|
|---|
| 109 |
|
|---|
| 110 |
|
|---|
| 111 | //Kinematic
|
|---|
| 112 | //---------
|
|---|
| 113 | G4double projectileM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 114 | G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
|
|---|
| 115 | G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
|
|---|
| 116 | G4double projectileP = std::sqrt(projectileP2);
|
|---|
| 117 |
|
|---|
| 118 |
|
|---|
| 119 | //Angle of the gamma direction with the projectile taken from G4eBremsstrahlungModel
|
|---|
| 120 | //------------------------------------------------
|
|---|
| 121 | G4double u;
|
|---|
| 122 | const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
|
|---|
| 123 |
|
|---|
| 124 | if (9./(9.+d) > G4UniformRand()) u = - log(G4UniformRand()*G4UniformRand())/a1;
|
|---|
| 125 | else u = - log(G4UniformRand()*G4UniformRand())/a2;
|
|---|
| 126 |
|
|---|
| 127 | G4double theta = u*electron_mass_c2/projectileTotalEnergy;
|
|---|
| 128 |
|
|---|
| 129 | G4double sint = std::sin(theta);
|
|---|
| 130 | G4double cost = std::cos(theta);
|
|---|
| 131 |
|
|---|
| 132 | G4double phi = twopi * G4UniformRand() ;
|
|---|
| 133 |
|
|---|
| 134 | G4ThreeVector projectileMomentum;
|
|---|
| 135 | projectileMomentum=G4ThreeVector(std::cos(phi)*sint,std::sin(phi)*sint,cost)*projectileP; //gamma frame
|
|---|
| 136 | if (IsScatProjToProjCase) {//the adjoint primary is the scattered e-
|
|---|
| 137 | G4ThreeVector gammaMomentum = (projectileTotalEnergy-adjointPrimTotalEnergy)*G4ThreeVector(0.,0.,1.);
|
|---|
| 138 | G4ThreeVector dirProd=projectileMomentum-gammaMomentum;
|
|---|
| 139 | G4double cost1 = std::cos(dirProd.angle(projectileMomentum));
|
|---|
| 140 | G4double sint1 = std::sqrt(1.-cost1*cost1);
|
|---|
| 141 | projectileMomentum=G4ThreeVector(std::cos(phi)*sint1,std::sin(phi)*sint1,cost1)*projectileP;
|
|---|
| 142 |
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | projectileMomentum.rotateUz(theAdjointPrimary->GetMomentumDirection());
|
|---|
| 146 |
|
|---|
| 147 |
|
|---|
| 148 |
|
|---|
| 149 | if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
|
|---|
| 150 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 151 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
|
|---|
| 152 | }
|
|---|
| 153 | else {
|
|---|
| 154 | fParticleChange->ProposeEnergy(projectileKinEnergy);
|
|---|
| 155 | fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
|
|---|
| 156 |
|
|---|
| 157 | }
|
|---|
| 158 | }
|
|---|
| 159 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 160 | //
|
|---|
| 161 | void G4AdjointBremsstrahlungModel::RapidSampleSecondaries(const G4Track& aTrack,
|
|---|
| 162 | G4bool IsScatProjToProjCase,
|
|---|
| 163 | G4ParticleChange* fParticleChange)
|
|---|
| 164 | {
|
|---|
| 165 |
|
|---|
| 166 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 167 | DefineCurrentMaterial(aTrack.GetMaterialCutsCouple());
|
|---|
| 168 |
|
|---|
| 169 |
|
|---|
| 170 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 171 | G4double adjointPrimTotalEnergy = theAdjointPrimary->GetTotalEnergy();
|
|---|
| 172 |
|
|---|
| 173 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 174 | return;
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | G4double projectileKinEnergy =0.;
|
|---|
| 178 | G4double gammaEnergy=0.;
|
|---|
| 179 | G4double diffCSUsed=0.;
|
|---|
| 180 | if (!IsScatProjToProjCase){
|
|---|
| 181 | gammaEnergy=adjointPrimKinEnergy;
|
|---|
| 182 | G4double Emax = GetSecondAdjEnergyMaxForProdToProjCase(adjointPrimKinEnergy);
|
|---|
| 183 | G4double Emin= GetSecondAdjEnergyMinForProdToProjCase(adjointPrimKinEnergy);;
|
|---|
| 184 | if (Emin>=Emax) return;
|
|---|
| 185 | projectileKinEnergy=Emin*pow(Emax/Emin,G4UniformRand());
|
|---|
| 186 | diffCSUsed=lastCZ/projectileKinEnergy;
|
|---|
| 187 |
|
|---|
| 188 | }
|
|---|
| 189 | else { G4double Emax = GetSecondAdjEnergyMaxForScatProjToProjCase(adjointPrimKinEnergy);
|
|---|
| 190 | G4double Emin = GetSecondAdjEnergyMinForScatProjToProjCase(adjointPrimKinEnergy,currentTcutForDirectSecond);
|
|---|
| 191 | if (Emin>=Emax) return;
|
|---|
| 192 | G4double f1=(Emin-adjointPrimKinEnergy)/Emin;
|
|---|
| 193 | G4double f2=(Emax-adjointPrimKinEnergy)/Emax/f1;
|
|---|
| 194 | //G4cout<<"f1 and f2 "<<f1<<'\t'<<f2<<G4endl;
|
|---|
| 195 | projectileKinEnergy=adjointPrimKinEnergy/(1.-f1*pow(f2,G4UniformRand()));
|
|---|
| 196 | gammaEnergy=projectileKinEnergy-adjointPrimKinEnergy;
|
|---|
| 197 | diffCSUsed=lastCZ*adjointPrimKinEnergy/projectileKinEnergy/gammaEnergy;
|
|---|
| 198 |
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 |
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | //Weight correction
|
|---|
| 205 | //-----------------------
|
|---|
| 206 | //First w_corr is set to the ratio between adjoint total CS and fwd total CS
|
|---|
| 207 | G4double w_corr=G4AdjointCSManager::GetAdjointCSManager()->GetPostStepWeightCorrection();
|
|---|
| 208 |
|
|---|
| 209 | //Then another correction is needed due to the fact that a biaised differential CS has been used rather than the one consistent with the direct model
|
|---|
| 210 | //Here we consider the true diffCS as the one obtained by the numericla differentiation over Tcut of the direct CS, corrected by the Migdal term.
|
|---|
| 211 | //Basically any other differential CS diffCS could be used here (example Penelope).
|
|---|
| 212 |
|
|---|
| 213 | G4double diffCS = DiffCrossSectionPerVolumePrimToSecond(currentMaterial, projectileKinEnergy, gammaEnergy);
|
|---|
| 214 | w_corr*=diffCS/diffCSUsed;
|
|---|
| 215 |
|
|---|
| 216 | G4double new_weight = aTrack.GetWeight()*w_corr;
|
|---|
| 217 | fParticleChange->SetParentWeightByProcess(false);
|
|---|
| 218 | fParticleChange->SetSecondaryWeightByProcess(false);
|
|---|
| 219 | fParticleChange->ProposeParentWeight(new_weight);
|
|---|
| 220 |
|
|---|
| 221 | //Kinematic
|
|---|
| 222 | //---------
|
|---|
| 223 | G4double projectileM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 224 | G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
|
|---|
| 225 | G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
|
|---|
| 226 | G4double projectileP = std::sqrt(projectileP2);
|
|---|
| 227 |
|
|---|
| 228 |
|
|---|
| 229 | //Angle of the gamma direction with the projectile taken from G4eBremsstrahlungModel
|
|---|
| 230 | //------------------------------------------------
|
|---|
| 231 | G4double u;
|
|---|
| 232 | const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
|
|---|
| 233 |
|
|---|
| 234 | if (9./(9.+d) > G4UniformRand()) u = - log(G4UniformRand()*G4UniformRand())/a1;
|
|---|
| 235 | else u = - log(G4UniformRand()*G4UniformRand())/a2;
|
|---|
| 236 |
|
|---|
| 237 | G4double theta = u*electron_mass_c2/projectileTotalEnergy;
|
|---|
| 238 |
|
|---|
| 239 | G4double sint = std::sin(theta);
|
|---|
| 240 | G4double cost = std::cos(theta);
|
|---|
| 241 |
|
|---|
| 242 | G4double phi = twopi * G4UniformRand() ;
|
|---|
| 243 |
|
|---|
| 244 | G4ThreeVector projectileMomentum;
|
|---|
| 245 | projectileMomentum=G4ThreeVector(std::cos(phi)*sint,std::sin(phi)*sint,cost)*projectileP; //gamma frame
|
|---|
| 246 | if (IsScatProjToProjCase) {//the adjoint primary is the scattered e-
|
|---|
| 247 | G4ThreeVector gammaMomentum = (projectileTotalEnergy-adjointPrimTotalEnergy)*G4ThreeVector(0.,0.,1.);
|
|---|
| 248 | G4ThreeVector dirProd=projectileMomentum-gammaMomentum;
|
|---|
| 249 | G4double cost1 = std::cos(dirProd.angle(projectileMomentum));
|
|---|
| 250 | G4double sint1 = std::sqrt(1.-cost1*cost1);
|
|---|
| 251 | projectileMomentum=G4ThreeVector(std::cos(phi)*sint1,std::sin(phi)*sint1,cost1)*projectileP;
|
|---|
| 252 |
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | projectileMomentum.rotateUz(theAdjointPrimary->GetMomentumDirection());
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 |
|
|---|
| 259 | if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
|
|---|
| 260 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 261 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
|
|---|
| 262 | }
|
|---|
| 263 | else {
|
|---|
| 264 | fParticleChange->ProposeEnergy(projectileKinEnergy);
|
|---|
| 265 | fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
|
|---|
| 266 |
|
|---|
| 267 | }
|
|---|
| 268 | }
|
|---|
| 269 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 270 | //
|
|---|
| 271 | G4AdjointBremsstrahlungModel::~G4AdjointBremsstrahlungModel()
|
|---|
| 272 | {;}
|
|---|
| 273 |
|
|---|
| 274 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 275 | //
|
|---|
| 276 | G4double G4AdjointBremsstrahlungModel::DiffCrossSectionPerVolumePrimToSecond(const G4Material* aMaterial,
|
|---|
| 277 | G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction
|
|---|
| 278 | G4double kinEnergyProd // kinetic energy of the secondary particle
|
|---|
| 279 | )
|
|---|
| 280 | {/*if (UsePenelopeModel && !isPenelopeModelInitialised) {
|
|---|
| 281 | theEmModelManagerForFwdModels->Initialise(G4Electron::Electron(),G4Gamma::Gamma(),1.,0);
|
|---|
| 282 | isPenelopeModelInitialised =true;
|
|---|
| 283 | }
|
|---|
| 284 | */
|
|---|
| 285 | return DiffCrossSectionPerVolumePrimToSecondApproximated2(aMaterial,
|
|---|
| 286 | kinEnergyProj,
|
|---|
| 287 | kinEnergyProd);
|
|---|
| 288 | /*return G4VEmAdjointModel::DiffCrossSectionPerVolumePrimToSecond(aMaterial,
|
|---|
| 289 | kinEnergyProj,
|
|---|
| 290 | kinEnergyProd);*/
|
|---|
| 291 | }
|
|---|
| 292 |
|
|---|
| 293 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 294 | //
|
|---|
| 295 | G4double G4AdjointBremsstrahlungModel::DiffCrossSectionPerVolumePrimToSecondApproximated1(
|
|---|
| 296 | const G4Material* aMaterial,
|
|---|
| 297 | G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction
|
|---|
| 298 | G4double kinEnergyProd // kinetic energy of the secondary particle
|
|---|
| 299 | )
|
|---|
| 300 | {
|
|---|
| 301 | G4double dCrossEprod=0.;
|
|---|
| 302 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 303 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 304 |
|
|---|
| 305 |
|
|---|
| 306 | //In this approximation we consider that the secondary gammas are sampled with 1/Egamma energy distribution
|
|---|
| 307 | //This is what is applied in the discrete standard model before the rejection test that make a cooerction
|
|---|
| 308 | //The application of the same rejection function is not possble here.
|
|---|
| 309 | //The differentiation of the CS over Ecut does not produce neither a good differential CS. That is due to the
|
|---|
| 310 | // fact that in the discrete model the differential CS and the integrated CS are both fitted but separatly and
|
|---|
| 311 | // therefore do not allow a correct numerical differentiation of the integrated CS to get the differential one.
|
|---|
| 312 | // In the future we plan to use the brem secondary spectra from the G4Penelope implementation
|
|---|
| 313 |
|
|---|
| 314 | if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){
|
|---|
| 315 | G4double sigma=theDirectEMModel->CrossSectionPerVolume(aMaterial,theDirectPrimaryPartDef,kinEnergyProj,1.*keV);
|
|---|
| 316 | dCrossEprod=sigma/kinEnergyProd/std::log(kinEnergyProj/keV);
|
|---|
| 317 | }
|
|---|
| 318 | return dCrossEprod;
|
|---|
| 319 |
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 323 | //
|
|---|
| 324 | G4double G4AdjointBremsstrahlungModel::DiffCrossSectionPerVolumePrimToSecondApproximated2(
|
|---|
| 325 | const G4Material* material,
|
|---|
| 326 | G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction
|
|---|
| 327 | G4double kinEnergyProd // kinetic energy of the secondary particle
|
|---|
| 328 | )
|
|---|
| 329 | {
|
|---|
| 330 | //In this approximation we derive the direct cross section over Tcut=gamma energy, en after apply the Migdla correction factor
|
|---|
| 331 | //used in the direct model
|
|---|
| 332 |
|
|---|
| 333 | G4double dCrossEprod=0.;
|
|---|
| 334 |
|
|---|
| 335 | const G4ElementVector* theElementVector = material->GetElementVector();
|
|---|
| 336 | const double* theAtomNumDensityVector = material->GetAtomicNumDensityVector();
|
|---|
| 337 | G4double dum=0.;
|
|---|
| 338 | G4double E1=kinEnergyProd,E2=kinEnergyProd*1.001;
|
|---|
| 339 | G4double dE=E2-E1;
|
|---|
| 340 | for (size_t i=0; i<material->GetNumberOfElements(); i++) {
|
|---|
| 341 | G4double C1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,(*theElementVector)[i]->GetZ(),dum ,E1);
|
|---|
| 342 | G4double C2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,(*theElementVector)[i]->GetZ(),dum,E2);
|
|---|
| 343 | dCrossEprod += theAtomNumDensityVector[i] * (C1-C2)/dE;
|
|---|
| 344 |
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | //Now the Migdal correction
|
|---|
| 348 |
|
|---|
| 349 | G4double totalEnergy = kinEnergyProj+electron_mass_c2 ;
|
|---|
| 350 | G4double kp2 = MigdalConstant*totalEnergy*totalEnergy
|
|---|
| 351 | *(material->GetElectronDensity());
|
|---|
| 352 |
|
|---|
| 353 |
|
|---|
| 354 | G4double MigdalFactor = 1./(1.+kp2/(kinEnergyProd*kinEnergyProd)); // its seems that the factor used in the CS compuation i the direct
|
|---|
| 355 | //model is different than the one used in the secondary sampling by a
|
|---|
| 356 | //factor (1.+kp2) To be checked!
|
|---|
| 357 |
|
|---|
| 358 | dCrossEprod*=MigdalFactor;
|
|---|
| 359 | return dCrossEprod;
|
|---|
| 360 |
|
|---|
| 361 | }
|
|---|
| 362 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 363 | //
|
|---|
| 364 | G4double G4AdjointBremsstrahlungModel::AdjointCrossSection(const G4MaterialCutsCouple* aCouple,
|
|---|
| 365 | G4double primEnergy,
|
|---|
| 366 | G4bool IsScatProjToProjCase)
|
|---|
| 367 | {/* if (UsePenelopeModel && !isPenelopeModelInitialised) {
|
|---|
| 368 | theEmModelManagerForFwdModels->Initialise(G4Electron::Electron(),G4Gamma::Gamma(),1.,0);
|
|---|
| 369 | isPenelopeModelInitialised =true;
|
|---|
| 370 | }
|
|---|
| 371 | */
|
|---|
| 372 | if (UseMatrix) return G4VEmAdjointModel::AdjointCrossSection(aCouple,primEnergy,IsScatProjToProjCase);
|
|---|
| 373 | DefineCurrentMaterial(aCouple);
|
|---|
| 374 | G4double Cross=0.;
|
|---|
| 375 | lastCZ=theDirectEMModel->CrossSectionPerVolume(aCouple->GetMaterial(),theDirectPrimaryPartDef,100.*MeV,100.*MeV/exp(1.));//this give the constant above
|
|---|
| 376 |
|
|---|
| 377 | if (!IsScatProjToProjCase ){
|
|---|
| 378 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(primEnergy);
|
|---|
| 379 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(primEnergy);
|
|---|
| 380 | if (Emax_proj>Emin_proj && primEnergy > currentTcutForDirectSecond) Cross= lastCZ*log(Emax_proj/Emin_proj);
|
|---|
| 381 | }
|
|---|
| 382 | else {
|
|---|
| 383 | G4double Emax_proj = GetSecondAdjEnergyMaxForScatProjToProjCase(primEnergy);
|
|---|
| 384 | G4double Emin_proj = GetSecondAdjEnergyMinForScatProjToProjCase(primEnergy,currentTcutForDirectSecond);
|
|---|
| 385 | if (Emax_proj>Emin_proj) Cross= lastCZ*log((Emax_proj-primEnergy)*Emin_proj/Emax_proj/(Emin_proj-primEnergy));
|
|---|
| 386 |
|
|---|
| 387 | }
|
|---|
| 388 | return Cross;
|
|---|
| 389 | }
|
|---|
| 390 |
|
|---|
| 391 |
|
|---|
| 392 |
|
|---|
| 393 |
|
|---|
| 394 |
|
|---|