| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4AdjointComptonModel.cc,v 1.6 2009/12/16 17:50:03 gunter Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 28 | //
|
|---|
| 29 | #include "G4AdjointComptonModel.hh"
|
|---|
| 30 | #include "G4AdjointCSManager.hh"
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 | #include "G4Integrator.hh"
|
|---|
| 34 | #include "G4TrackStatus.hh"
|
|---|
| 35 | #include "G4ParticleChange.hh"
|
|---|
| 36 | #include "G4AdjointElectron.hh"
|
|---|
| 37 | #include "G4AdjointGamma.hh"
|
|---|
| 38 | #include "G4Gamma.hh"
|
|---|
| 39 | #include "G4KleinNishinaCompton.hh"
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 43 | //
|
|---|
| 44 | G4AdjointComptonModel::G4AdjointComptonModel():
|
|---|
| 45 | G4VEmAdjointModel("AdjointCompton")
|
|---|
| 46 |
|
|---|
| 47 | { SetApplyCutInRange(false);
|
|---|
| 48 | SetUseMatrix(true);
|
|---|
| 49 | SetUseMatrixPerElement(true);
|
|---|
| 50 | SetUseOnlyOneMatrixForAllElements(true);
|
|---|
| 51 | theAdjEquivOfDirectPrimPartDef =G4AdjointGamma::AdjointGamma();
|
|---|
| 52 | theAdjEquivOfDirectSecondPartDef=G4AdjointElectron::AdjointElectron();
|
|---|
| 53 | theDirectPrimaryPartDef=G4Gamma::Gamma();
|
|---|
| 54 | second_part_of_same_type=false;
|
|---|
| 55 | theDirectEMModel=new G4KleinNishinaCompton(G4Gamma::Gamma(),"ComptonDirectModel");
|
|---|
| 56 |
|
|---|
| 57 | }
|
|---|
| 58 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 59 | //
|
|---|
| 60 | G4AdjointComptonModel::~G4AdjointComptonModel()
|
|---|
| 61 | {;}
|
|---|
| 62 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 63 | //
|
|---|
| 64 | void G4AdjointComptonModel::SampleSecondaries(const G4Track& aTrack,
|
|---|
| 65 | G4bool IsScatProjToProjCase,
|
|---|
| 66 | G4ParticleChange* fParticleChange)
|
|---|
| 67 | {
|
|---|
| 68 | if (!UseMatrix) return RapidSampleSecondaries(aTrack,IsScatProjToProjCase,fParticleChange);
|
|---|
| 69 |
|
|---|
| 70 | //A recall of the compton scattering law is
|
|---|
| 71 | //Egamma2=Egamma1/(1+(Egamma1/E0_electron)(1.-cos_th))
|
|---|
| 72 | //Therefore Egamma2_max= Egamma2(cos_th=1) = Egamma1
|
|---|
| 73 | //Therefore Egamma2_min= Egamma2(cos_th=-1) = Egamma1/(1+2.(Egamma1/E0_electron))
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 77 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 78 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 79 | return;
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 |
|
|---|
| 83 | //Sample secondary energy
|
|---|
| 84 | //-----------------------
|
|---|
| 85 | G4double gammaE1;
|
|---|
| 86 | gammaE1 = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy,
|
|---|
| 87 | IsScatProjToProjCase);
|
|---|
| 88 |
|
|---|
| 89 |
|
|---|
| 90 | //gammaE2
|
|---|
| 91 | //-----------
|
|---|
| 92 |
|
|---|
| 93 | G4double gammaE2 = adjointPrimKinEnergy;
|
|---|
| 94 | if (!IsScatProjToProjCase) gammaE2 = gammaE1 - adjointPrimKinEnergy;
|
|---|
| 95 |
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 |
|
|---|
| 101 | //Cos th
|
|---|
| 102 | //-------
|
|---|
| 103 | // G4cout<<"Compton scattering "<<gammaE1<<'\t'<<gammaE2<<G4endl;
|
|---|
| 104 | G4double cos_th = 1.+ electron_mass_c2*(1./gammaE1 -1./gammaE2);
|
|---|
| 105 | if (!IsScatProjToProjCase) {
|
|---|
| 106 | G4double p_elec=theAdjointPrimary->GetTotalMomentum();
|
|---|
| 107 | cos_th = (gammaE1 - gammaE2*cos_th)/p_elec;
|
|---|
| 108 | }
|
|---|
| 109 | G4double sin_th = 0.;
|
|---|
| 110 | if (std::abs(cos_th)>1){
|
|---|
| 111 | //G4cout<<"Problem in compton scattering with cos_th "<<cos_th<<G4endl;
|
|---|
| 112 | if (cos_th>0) {
|
|---|
| 113 | cos_th=1.;
|
|---|
| 114 | }
|
|---|
| 115 | else cos_th=-1.;
|
|---|
| 116 | sin_th=0.;
|
|---|
| 117 | }
|
|---|
| 118 | else sin_th = std::sqrt(1.-cos_th*cos_th);
|
|---|
| 119 |
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 |
|
|---|
| 123 | //gamma0 momentum
|
|---|
| 124 | //--------------------
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
|
|---|
| 128 | G4double phi =G4UniformRand()*2.*3.1415926;
|
|---|
| 129 | G4ThreeVector gammaMomentum1 = gammaE1*G4ThreeVector(std::cos(phi)*sin_th,std::sin(phi)*sin_th,cos_th);
|
|---|
| 130 | gammaMomentum1.rotateUz(dir_parallel);
|
|---|
| 131 | // G4cout<<gamma0Energy<<'\t'<<gamma0Momentum<<G4endl;
|
|---|
| 132 |
|
|---|
| 133 |
|
|---|
| 134 | //It is important to correct the weight of particles before adding the secondary
|
|---|
| 135 | //------------------------------------------------------------------------------
|
|---|
| 136 | CorrectPostStepWeight(fParticleChange,
|
|---|
| 137 | aTrack.GetWeight(),
|
|---|
| 138 | adjointPrimKinEnergy,
|
|---|
| 139 | gammaE1,
|
|---|
| 140 | IsScatProjToProjCase);
|
|---|
| 141 |
|
|---|
| 142 | if (!IsScatProjToProjCase){ //kill the primary and add a secondary
|
|---|
| 143 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 144 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,gammaMomentum1));
|
|---|
| 145 | //G4cout<<"gamma0Momentum "<<gamma0Momentum<<G4endl;
|
|---|
| 146 | }
|
|---|
| 147 | else {
|
|---|
| 148 | fParticleChange->ProposeEnergy(gammaE1);
|
|---|
| 149 | fParticleChange->ProposeMomentumDirection(gammaMomentum1.unit());
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 | }
|
|---|
| 154 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 155 | //
|
|---|
| 156 | void G4AdjointComptonModel::RapidSampleSecondaries(const G4Track& aTrack,
|
|---|
| 157 | G4bool IsScatProjToProjCase,
|
|---|
| 158 | G4ParticleChange* fParticleChange)
|
|---|
| 159 | {
|
|---|
| 160 |
|
|---|
| 161 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 162 | DefineCurrentMaterial(aTrack.GetMaterialCutsCouple());
|
|---|
| 163 |
|
|---|
| 164 |
|
|---|
| 165 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 166 |
|
|---|
| 167 |
|
|---|
| 168 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 169 | return;
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 |
|
|---|
| 173 | G4double diffCSUsed=currentMaterial->GetElectronDensity()*twopi_mc2_rcl2;
|
|---|
| 174 | G4double gammaE1=0.;
|
|---|
| 175 | G4double gammaE2=0.;
|
|---|
| 176 | if (!IsScatProjToProjCase){
|
|---|
| 177 |
|
|---|
| 178 | G4double Emax = GetSecondAdjEnergyMaxForProdToProjCase(adjointPrimKinEnergy);
|
|---|
| 179 | G4double Emin= GetSecondAdjEnergyMinForProdToProjCase(adjointPrimKinEnergy);;
|
|---|
| 180 | if (Emin>=Emax) return;
|
|---|
| 181 | G4double f1=(Emin-adjointPrimKinEnergy)/Emin;
|
|---|
| 182 | G4double f2=(Emax-adjointPrimKinEnergy)/Emax/f1;
|
|---|
| 183 | gammaE1=adjointPrimKinEnergy/(1.-f1*std::pow(f2,G4UniformRand()));;
|
|---|
| 184 | gammaE2=gammaE1-adjointPrimKinEnergy;
|
|---|
| 185 | diffCSUsed= diffCSUsed*(1.+2.*std::log(1.+electron_mass_c2/adjointPrimKinEnergy))*adjointPrimKinEnergy/gammaE1/gammaE2;
|
|---|
| 186 |
|
|---|
| 187 |
|
|---|
| 188 | }
|
|---|
| 189 | else { G4double Emax = GetSecondAdjEnergyMaxForScatProjToProjCase(adjointPrimKinEnergy);
|
|---|
| 190 | G4double Emin = GetSecondAdjEnergyMinForScatProjToProjCase(adjointPrimKinEnergy,currentTcutForDirectSecond);
|
|---|
| 191 | if (Emin>=Emax) return;
|
|---|
| 192 | gammaE2 =adjointPrimKinEnergy;
|
|---|
| 193 | gammaE1=Emin*std::pow(Emax/Emin,G4UniformRand());
|
|---|
| 194 | diffCSUsed= diffCSUsed/gammaE1;
|
|---|
| 195 |
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 |
|
|---|
| 199 |
|
|---|
| 200 |
|
|---|
| 201 | //Weight correction
|
|---|
| 202 | //-----------------------
|
|---|
| 203 | //First w_corr is set to the ratio between adjoint total CS and fwd total CS
|
|---|
| 204 | G4double w_corr=G4AdjointCSManager::GetAdjointCSManager()->GetPostStepWeightCorrection();
|
|---|
| 205 |
|
|---|
| 206 | //Then another correction is needed due to the fact that a biaised differential CS has been used rather than the
|
|---|
| 207 | //one consistent with the direct model
|
|---|
| 208 |
|
|---|
| 209 |
|
|---|
| 210 | G4double diffCS = DiffCrossSectionPerAtomPrimToScatPrim(gammaE1, gammaE2,1,0.);
|
|---|
| 211 | if (diffCS >0) diffCS /=G4direct_CS; // here we have the normalised diffCS
|
|---|
| 212 | diffCS*=theDirectEMProcess->GetLambda(gammaE1,currentCouple);
|
|---|
| 213 | //diffCS*=theDirectEMModel->CrossSectionPerVolume(currentMaterial,G4Gamma::Gamma(),gammaE1,0.,2.*gammaE1);
|
|---|
| 214 | //G4cout<<"diffCS/diffCSUsed "<<diffCS/diffCSUsed<<'\t'<<gammaE1<<'\t'<<gammaE2<<G4endl;
|
|---|
| 215 |
|
|---|
| 216 | w_corr*=diffCS/diffCSUsed;
|
|---|
| 217 |
|
|---|
| 218 | G4double new_weight = aTrack.GetWeight()*w_corr;
|
|---|
| 219 | fParticleChange->SetParentWeightByProcess(false);
|
|---|
| 220 | fParticleChange->SetSecondaryWeightByProcess(false);
|
|---|
| 221 | fParticleChange->ProposeParentWeight(new_weight);
|
|---|
| 222 |
|
|---|
| 223 |
|
|---|
| 224 |
|
|---|
| 225 | //Cos th
|
|---|
| 226 | //-------
|
|---|
| 227 |
|
|---|
| 228 | G4double cos_th = 1.+ electron_mass_c2*(1./gammaE1 -1./gammaE2);
|
|---|
| 229 | if (!IsScatProjToProjCase) {
|
|---|
| 230 | G4double p_elec=theAdjointPrimary->GetTotalMomentum();
|
|---|
| 231 | cos_th = (gammaE1 - gammaE2*cos_th)/p_elec;
|
|---|
| 232 | }
|
|---|
| 233 | G4double sin_th = 0.;
|
|---|
| 234 | if (std::abs(cos_th)>1){
|
|---|
| 235 | //G4cout<<"Problem in compton scattering with cos_th "<<cos_th<<G4endl;
|
|---|
| 236 | if (cos_th>0) {
|
|---|
| 237 | cos_th=1.;
|
|---|
| 238 | }
|
|---|
| 239 | else cos_th=-1.;
|
|---|
| 240 | sin_th=0.;
|
|---|
| 241 | }
|
|---|
| 242 | else sin_th = std::sqrt(1.-cos_th*cos_th);
|
|---|
| 243 |
|
|---|
| 244 |
|
|---|
| 245 |
|
|---|
| 246 |
|
|---|
| 247 | //gamma0 momentum
|
|---|
| 248 | //--------------------
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
|
|---|
| 252 | G4double phi =G4UniformRand()*2.*3.1415926;
|
|---|
| 253 | G4ThreeVector gammaMomentum1 = gammaE1*G4ThreeVector(std::cos(phi)*sin_th,std::sin(phi)*sin_th,cos_th);
|
|---|
| 254 | gammaMomentum1.rotateUz(dir_parallel);
|
|---|
| 255 |
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 |
|
|---|
| 259 | if (!IsScatProjToProjCase){ //kill the primary and add a secondary
|
|---|
| 260 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 261 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,gammaMomentum1));
|
|---|
| 262 | //G4cout<<"gamma0Momentum "<<gamma0Momentum<<G4endl;
|
|---|
| 263 | }
|
|---|
| 264 | else {
|
|---|
| 265 | fParticleChange->ProposeEnergy(gammaE1);
|
|---|
| 266 | fParticleChange->ProposeMomentumDirection(gammaMomentum1.unit());
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 |
|
|---|
| 270 |
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 275 | //
|
|---|
| 276 | //The implementation here is correct for energy loss process, for the photoelectric and compton scattering the method should be redefine
|
|---|
| 277 | G4double G4AdjointComptonModel::DiffCrossSectionPerAtomPrimToSecond(
|
|---|
| 278 | G4double gamEnergy0,
|
|---|
| 279 | G4double kinEnergyElec,
|
|---|
| 280 | G4double Z,
|
|---|
| 281 | G4double A)
|
|---|
| 282 | {
|
|---|
| 283 | G4double gamEnergy1 = gamEnergy0 - kinEnergyElec;
|
|---|
| 284 | G4double dSigmadEprod=0.;
|
|---|
| 285 | if (gamEnergy1>0.) dSigmadEprod=DiffCrossSectionPerAtomPrimToScatPrim(gamEnergy0,gamEnergy1,Z,A);
|
|---|
| 286 | return dSigmadEprod;
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 |
|
|---|
| 290 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 291 | //
|
|---|
| 292 | G4double G4AdjointComptonModel::DiffCrossSectionPerAtomPrimToScatPrim(
|
|---|
| 293 | G4double gamEnergy0,
|
|---|
| 294 | G4double gamEnergy1,
|
|---|
| 295 | G4double Z,
|
|---|
| 296 | G4double )
|
|---|
| 297 | { //Based on Klein Nishina formula
|
|---|
| 298 | // In the forward case (see G4KleinNishinaModel) the cross section is parametrised while
|
|---|
| 299 | // the secondaries are sampled from the
|
|---|
| 300 | // Klein Nishida differential cross section
|
|---|
| 301 | // The used diffrential cross section here is therefore the cross section multiplied by the normalised
|
|---|
| 302 | //differential Klein Nishida cross section
|
|---|
| 303 |
|
|---|
| 304 |
|
|---|
| 305 | //Klein Nishida Cross Section
|
|---|
| 306 | //-----------------------------
|
|---|
| 307 | G4double epsilon = gamEnergy0 / electron_mass_c2 ;
|
|---|
| 308 | G4double one_plus_two_epsi =1.+2.*epsilon;
|
|---|
| 309 | G4double gamEnergy1_max = gamEnergy0;
|
|---|
| 310 | G4double gamEnergy1_min = gamEnergy0/one_plus_two_epsi;
|
|---|
| 311 | if (gamEnergy1 >gamEnergy1_max || gamEnergy1<gamEnergy1_min) {
|
|---|
| 312 | /*G4cout<<"the differential CS is null"<<G4endl;
|
|---|
| 313 | G4cout<<gamEnergy0<<G4endl;
|
|---|
| 314 | G4cout<<gamEnergy1<<G4endl;
|
|---|
| 315 | G4cout<<gamEnergy1_min<<G4endl;*/
|
|---|
| 316 | return 0.;
|
|---|
| 317 | }
|
|---|
| 318 |
|
|---|
| 319 |
|
|---|
| 320 | G4double epsi2 = epsilon *epsilon ;
|
|---|
| 321 | G4double one_plus_two_epsi_2=one_plus_two_epsi*one_plus_two_epsi;
|
|---|
| 322 |
|
|---|
| 323 |
|
|---|
| 324 | G4double CS=std::log(one_plus_two_epsi)*(1.- 2.*(1.+epsilon)/epsi2);
|
|---|
| 325 | CS+=4./epsilon +0.5*(1.-1./one_plus_two_epsi_2);
|
|---|
| 326 | CS/=epsilon;
|
|---|
| 327 | //Note that the pi*re2*Z factor is neglected because it is suppresed when computing dCS_dE1/CS;
|
|---|
| 328 | // in the differential cross section
|
|---|
| 329 |
|
|---|
| 330 |
|
|---|
| 331 | //Klein Nishida Differential Cross Section
|
|---|
| 332 | //-----------------------------------------
|
|---|
| 333 | G4double epsilon1 = gamEnergy1 / electron_mass_c2 ;
|
|---|
| 334 | G4double v= epsilon1/epsilon;
|
|---|
| 335 | G4double term1 =1.+ 1./epsilon -1/epsilon1;
|
|---|
| 336 | G4double dCS_dE1= 1./v +v + term1*term1 -1.;
|
|---|
| 337 | dCS_dE1 *=1./epsilon/gamEnergy0;
|
|---|
| 338 |
|
|---|
| 339 |
|
|---|
| 340 | //Normalised to the CS used in G4
|
|---|
| 341 | //-------------------------------
|
|---|
| 342 |
|
|---|
| 343 | G4direct_CS = theDirectEMModel->ComputeCrossSectionPerAtom(G4Gamma::Gamma(),
|
|---|
| 344 | gamEnergy0,
|
|---|
| 345 | Z, 0., 0.,0.);
|
|---|
| 346 |
|
|---|
| 347 | dCS_dE1 *= G4direct_CS/CS;
|
|---|
| 348 | /* G4cout<<"the differential CS is not null"<<G4endl;
|
|---|
| 349 | G4cout<<gamEnergy0<<G4endl;
|
|---|
| 350 | G4cout<<gamEnergy1<<G4endl;*/
|
|---|
| 351 |
|
|---|
| 352 | return dCS_dE1;
|
|---|
| 353 |
|
|---|
| 354 |
|
|---|
| 355 | }
|
|---|
| 356 |
|
|---|
| 357 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 358 | //
|
|---|
| 359 | G4double G4AdjointComptonModel::GetSecondAdjEnergyMaxForScatProjToProjCase(G4double PrimAdjEnergy)
|
|---|
| 360 | { G4double inv_e_max = 1./PrimAdjEnergy - 2./electron_mass_c2;
|
|---|
| 361 | G4double e_max = HighEnergyLimit;
|
|---|
| 362 | if (inv_e_max > 0. ) e_max=std::min(1./inv_e_max,HighEnergyLimit);
|
|---|
| 363 | return e_max;
|
|---|
| 364 | }
|
|---|
| 365 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 366 | //
|
|---|
| 367 | G4double G4AdjointComptonModel::GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
|
|---|
| 368 | { G4double half_e=PrimAdjEnergy/2.;
|
|---|
| 369 | G4double term=std::sqrt(half_e*(electron_mass_c2+half_e));
|
|---|
| 370 | G4double emin=half_e+term;
|
|---|
| 371 | return emin;
|
|---|
| 372 | }
|
|---|
| 373 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 374 | //
|
|---|
| 375 | G4double G4AdjointComptonModel::AdjointCrossSection(const G4MaterialCutsCouple* aCouple,
|
|---|
| 376 | G4double primEnergy,
|
|---|
| 377 | G4bool IsScatProjToProjCase)
|
|---|
| 378 | {
|
|---|
| 379 | if (UseMatrix) return G4VEmAdjointModel::AdjointCrossSection(aCouple,primEnergy,IsScatProjToProjCase);
|
|---|
| 380 | DefineCurrentMaterial(aCouple);
|
|---|
| 381 |
|
|---|
| 382 |
|
|---|
| 383 | G4double Cross=0.;
|
|---|
| 384 | G4double Emax_proj =0.;
|
|---|
| 385 | G4double Emin_proj =0.;
|
|---|
| 386 | if (!IsScatProjToProjCase ){
|
|---|
| 387 | Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(primEnergy);
|
|---|
| 388 | Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(primEnergy);
|
|---|
| 389 | if (Emax_proj>Emin_proj ){
|
|---|
| 390 | Cross= std::log((Emax_proj-primEnergy)*Emin_proj/Emax_proj/(Emin_proj-primEnergy))
|
|---|
| 391 | *(1.+2.*std::log(1.+electron_mass_c2/primEnergy));
|
|---|
| 392 | }
|
|---|
| 393 | }
|
|---|
| 394 | else {
|
|---|
| 395 | Emax_proj = GetSecondAdjEnergyMaxForScatProjToProjCase(primEnergy);
|
|---|
| 396 | Emin_proj = GetSecondAdjEnergyMinForScatProjToProjCase(primEnergy,0.);
|
|---|
| 397 | if (Emax_proj>Emin_proj) {
|
|---|
| 398 | Cross = std::log(Emax_proj/Emin_proj);
|
|---|
| 399 | //+0.5*primEnergy*primEnergy(1./(Emin_proj*Emin_proj) - 1./(Emax_proj*Emax_proj)); neglected at the moment
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 |
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | Cross*=currentMaterial->GetElectronDensity()*twopi_mc2_rcl2;
|
|---|
| 406 | lastCS=Cross;
|
|---|
| 407 | return Cross;
|
|---|
| 408 | }
|
|---|