| [966] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | #include "G4AdjointCSMatrix.hh"
|
|---|
| 27 | #include "G4AdjointInterpolator.hh"
|
|---|
| 28 |
|
|---|
| 29 | G4AdjointInterpolator* G4AdjointInterpolator::theInstance = 0;
|
|---|
| 30 | ///////////////////////////////////////////////////////
|
|---|
| 31 | //
|
|---|
| 32 | G4AdjointInterpolator* G4AdjointInterpolator::GetAdjointInterpolator()
|
|---|
| 33 | { if(theInstance == 0) {
|
|---|
| 34 | static G4AdjointInterpolator interpolator;
|
|---|
| 35 | theInstance = &interpolator;
|
|---|
| 36 | }
|
|---|
| 37 | return theInstance;
|
|---|
| 38 | }
|
|---|
| 39 | ///////////////////////////////////////////////////////
|
|---|
| 40 | //
|
|---|
| 41 | G4AdjointInterpolator* G4AdjointInterpolator::GetInstance()
|
|---|
| 42 | { if(theInstance == 0) {
|
|---|
| 43 | static G4AdjointInterpolator interpolator;
|
|---|
| 44 | theInstance = &interpolator;
|
|---|
| 45 | }
|
|---|
| 46 | return theInstance;
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | ///////////////////////////////////////////////////////
|
|---|
| 50 | //
|
|---|
| 51 | G4AdjointInterpolator::G4AdjointInterpolator()
|
|---|
| 52 | {;
|
|---|
| 53 | }
|
|---|
| 54 | ///////////////////////////////////////////////////////
|
|---|
| 55 | //
|
|---|
| 56 | G4AdjointInterpolator::~G4AdjointInterpolator()
|
|---|
| 57 | {;
|
|---|
| 58 | }
|
|---|
| 59 | ///////////////////////////////////////////////////////
|
|---|
| 60 | //
|
|---|
| 61 | G4double G4AdjointInterpolator::LinearInterpolation(G4double& x,G4double& x1,G4double& x2,G4double& y1,G4double& y2)
|
|---|
| 62 | { G4double res = y1+ (x-x1)*(y2-y1)/(x2-x1);
|
|---|
| 63 | //G4cout<<"Linear "<<res<<std::endl;
|
|---|
| 64 | return res;
|
|---|
| 65 | }
|
|---|
| 66 | ///////////////////////////////////////////////////////
|
|---|
| 67 | //
|
|---|
| 68 | G4double G4AdjointInterpolator::LogarithmicInterpolation(G4double& x,G4double& x1,G4double& x2,G4double& y1,G4double& y2)
|
|---|
| 69 | { if (y1<=0 || y2<=0 || x1<=0) return LinearInterpolation(x,x1,x2,y1,y2);
|
|---|
| 70 | G4double B=std::log(y2/y1)/std::log(x2/x1);
|
|---|
| 71 | //G4cout<<"x1,x2,y1,y2 "<<x1<<'\t'<<x2<<'\t'<<y1<<'\t'<<y2<<'\t'<<std::endl;
|
|---|
| 72 | G4double A=y1/std::pow(x1,B);
|
|---|
| 73 | G4double res=A*std::pow(x,B);
|
|---|
| 74 | // G4cout<<"Log "<<res<<std::endl;
|
|---|
| 75 | return res;
|
|---|
| 76 | }
|
|---|
| 77 | ///////////////////////////////////////////////////////
|
|---|
| 78 | //
|
|---|
| 79 | G4double G4AdjointInterpolator::ExponentialInterpolation(G4double& x,G4double& x1,G4double& x2,G4double& y1,G4double& y2)
|
|---|
| 80 | { G4double B=(std::log(y2)-std::log(y1));
|
|---|
| 81 | B=B/(x2-x1);
|
|---|
| 82 | G4double A=y1*std::exp(-B*x1);
|
|---|
| 83 | G4double res=A*std::exp(B*x);
|
|---|
| 84 | return res;
|
|---|
| 85 | }
|
|---|
| 86 | ///////////////////////////////////////////////////////
|
|---|
| 87 | //
|
|---|
| 88 | G4double G4AdjointInterpolator::Interpolation(G4double& x,G4double& x1,G4double& x2,G4double& y1,G4double& y2,G4String InterPolMethod)
|
|---|
| 89 | {
|
|---|
| 90 | if (InterPolMethod == "Log" ){
|
|---|
| 91 | return LogarithmicInterpolation(x,x1,x2,y1,y2);
|
|---|
| 92 | }
|
|---|
| 93 | else if (InterPolMethod == "Lin" ){
|
|---|
| 94 | return LinearInterpolation(x,x1,x2,y1,y2);
|
|---|
| 95 | }
|
|---|
| 96 | else if (InterPolMethod == "Exp" ){
|
|---|
| 97 | return ExponentialInterpolation(x,x1,x2,y1,y2);
|
|---|
| 98 | }
|
|---|
| 99 | else {
|
|---|
| 100 | //G4cout<<"The interpolation method that you invoked does not exist!"<<std::endl;
|
|---|
| 101 | return -1111111111.;
|
|---|
| 102 | }
|
|---|
| 103 | }
|
|---|
| 104 | ///////////////////////////////////////////////////////
|
|---|
| 105 | //
|
|---|
| 106 | size_t G4AdjointInterpolator::FindPosition(G4double& x,std::vector<double>& x_vec,size_t , size_t ) //only valid if x_vec is monotically increasing
|
|---|
| 107 | { //most rapid nethod could be used probably
|
|---|
| 108 | //It is important to put std::vector<double>& such that the vector itself is used and not a copy
|
|---|
| 109 |
|
|---|
| 110 |
|
|---|
| 111 | size_t ndim = x_vec.size();
|
|---|
| 112 | size_t ind1 = 0;
|
|---|
| 113 | size_t ind2 = ndim - 1;
|
|---|
| 114 | /* if (ind_max >= ind_min){
|
|---|
| 115 | ind1=ind_min;
|
|---|
| 116 | ind2=ind_max;
|
|---|
| 117 |
|
|---|
| 118 |
|
|---|
| 119 | }
|
|---|
| 120 | */
|
|---|
| 121 |
|
|---|
| 122 |
|
|---|
| 123 | if (ndim >1) {
|
|---|
| 124 |
|
|---|
| 125 | if (x_vec[0] < x_vec[1] ) { //increasing
|
|---|
| 126 | do {
|
|---|
| 127 | size_t midBin = (ind1 + ind2)/2;
|
|---|
| 128 | if (x < x_vec[midBin])
|
|---|
| 129 | ind2 = midBin;
|
|---|
| 130 | else
|
|---|
| 131 | ind1 = midBin;
|
|---|
| 132 | } while (ind2 - ind1 > 1);
|
|---|
| 133 | }
|
|---|
| 134 | else {
|
|---|
| 135 | do {
|
|---|
| 136 | size_t midBin = (ind1 + ind2)/2;
|
|---|
| 137 | if (x < x_vec[midBin])
|
|---|
| 138 | ind1 = midBin;
|
|---|
| 139 | else
|
|---|
| 140 | ind2 = midBin;
|
|---|
| 141 | } while (ind2 - ind1 > 1);
|
|---|
| 142 | }
|
|---|
| 143 |
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | return ind1;
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | ///////////////////////////////////////////////////////
|
|---|
| 150 | //
|
|---|
| 151 | size_t G4AdjointInterpolator::FindPositionForLogVector(G4double& log_x,std::vector<double>& log_x_vec) //only valid if x_vec is monotically increasing
|
|---|
| 152 | { //most rapid nethod could be used probably
|
|---|
| 153 | //It is important to put std::vector<double>& such that the vector itself is used and not a copy
|
|---|
| 154 |
|
|---|
| 155 | if (log_x_vec.size()>3){
|
|---|
| 156 | size_t ind=0;
|
|---|
| 157 | G4double log_x1=log_x_vec[1];
|
|---|
| 158 | G4double d_log =log_x_vec[2]-log_x1;
|
|---|
| 159 | G4double dind=(log_x-log_x1)/d_log +1.;
|
|---|
| 160 | if (dind <1.) ind=0;
|
|---|
| 161 | else if (dind >= double(log_x_vec.size())-2.) ind =log_x_vec.size()-2;
|
|---|
| 162 | else ind =size_t(dind);
|
|---|
| 163 | return ind;
|
|---|
| 164 |
|
|---|
| 165 | }
|
|---|
| 166 | else return FindPosition(log_x, log_x_vec);
|
|---|
| 167 |
|
|---|
| 168 |
|
|---|
| 169 | }
|
|---|
| 170 | ///////////////////////////////////////////////////////
|
|---|
| 171 | //
|
|---|
| 172 | G4double G4AdjointInterpolator::Interpolate(G4double& x,std::vector<double>& x_vec,std::vector<double>& y_vec,G4String InterPolMethod)
|
|---|
| 173 | { size_t i=FindPosition(x,x_vec);
|
|---|
| 174 | //G4cout<<i<<std::endl;
|
|---|
| 175 | //G4cout<<x<<std::endl;
|
|---|
| 176 | //G4cout<<x_vec[i]<<std::endl;
|
|---|
| 177 | return Interpolation( x,x_vec[i],x_vec[i+1],y_vec[i],y_vec[i+1],InterPolMethod);
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | ///////////////////////////////////////////////////////
|
|---|
| 181 | //
|
|---|
| 182 | G4double G4AdjointInterpolator::InterpolateWithIndexVector(G4double& x,std::vector<double>& x_vec,std::vector<double>& y_vec,
|
|---|
| 183 | std::vector<size_t>& index_vec,G4double x0, G4double dx) //only linear interpolation possible
|
|---|
| 184 | { size_t ind=0;
|
|---|
| 185 | if (x>x0) ind=int((x-x0)/dx);
|
|---|
| 186 | if (ind >= index_vec.size()-1) ind= index_vec.size()-2;
|
|---|
| 187 | size_t ind1 = index_vec[ind];
|
|---|
| 188 | size_t ind2 = index_vec[ind+1];
|
|---|
| 189 | if (ind1 >ind2) {
|
|---|
| 190 | size_t ind11=ind1;
|
|---|
| 191 | ind1=ind2;
|
|---|
| 192 | ind2=ind11;
|
|---|
| 193 |
|
|---|
| 194 | }
|
|---|
| 195 |
|
|---|
| 196 | ind=FindPosition(x,x_vec,ind1,ind2);
|
|---|
| 197 | return Interpolation( x,x_vec[ind],x_vec[ind+1],y_vec[ind],y_vec[ind+1],"Lin");
|
|---|
| 198 |
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 |
|
|---|
| 202 | ///////////////////////////////////////////////////////
|
|---|
| 203 | //
|
|---|
| 204 | G4double G4AdjointInterpolator::InterpolateForLogVector(G4double& log_x,std::vector<double>& log_x_vec,std::vector<double>& log_y_vec)
|
|---|
| 205 | { //size_t i=0;
|
|---|
| 206 | size_t i=FindPositionForLogVector(log_x,log_x_vec);
|
|---|
| 207 | /*G4cout<<"In interpolate "<<std::endl;
|
|---|
| 208 | G4cout<<i<<std::endl;
|
|---|
| 209 | G4cout<<log_x<<std::endl;
|
|---|
| 210 | G4cout<<log_x_vec[i]<<std::endl;
|
|---|
| 211 | G4cout<<log_x_vec[i+1]<<std::endl;
|
|---|
| 212 | G4cout<<log_y_vec[i]<<std::endl;
|
|---|
| 213 | G4cout<<log_y_vec[i+1]<<std::endl;*/
|
|---|
| 214 |
|
|---|
| 215 | G4double log_y=LinearInterpolation(log_x,log_x_vec[i],log_x_vec[i+1],log_y_vec[i],log_y_vec[i+1]);
|
|---|
| 216 | return log_y;
|
|---|
| 217 |
|
|---|
| 218 | }
|
|---|