| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4AdjointIonIonisationModel.cc,v 1.2 2009/11/20 10:31:20 ldesorgh Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | #include "G4AdjointIonIonisationModel.hh"
|
|---|
| 30 | #include "G4AdjointCSManager.hh"
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 | #include "G4Integrator.hh"
|
|---|
| 34 | #include "G4TrackStatus.hh"
|
|---|
| 35 | #include "G4ParticleChange.hh"
|
|---|
| 36 | #include "G4AdjointElectron.hh"
|
|---|
| 37 | #include "G4AdjointProton.hh"
|
|---|
| 38 | #include "G4AdjointInterpolator.hh"
|
|---|
| 39 | #include "G4BetheBlochModel.hh"
|
|---|
| 40 | #include "G4BraggIonModel.hh"
|
|---|
| 41 | #include "G4Proton.hh"
|
|---|
| 42 | #include "G4GenericIon.hh"
|
|---|
| 43 | #include "G4NistManager.hh"
|
|---|
| 44 |
|
|---|
| 45 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 46 | //
|
|---|
| 47 | G4AdjointIonIonisationModel::G4AdjointIonIonisationModel():
|
|---|
| 48 | G4VEmAdjointModel("Adjoint_IonIonisation")
|
|---|
| 49 | {
|
|---|
| 50 |
|
|---|
| 51 |
|
|---|
| 52 | UseMatrix =true;
|
|---|
| 53 | UseMatrixPerElement = true;
|
|---|
| 54 | ApplyCutInRange = true;
|
|---|
| 55 | UseOnlyOneMatrixForAllElements = true;
|
|---|
| 56 | CS_biasing_factor =1.;
|
|---|
| 57 | second_part_of_same_type =false;
|
|---|
| 58 | use_only_bragg = false; // for the Ion ionisation using the parametrised table model the cross sections and the sample of secondaries is done
|
|---|
| 59 | // as in the BraggIonModel, Therefore the use of this flag;
|
|---|
| 60 |
|
|---|
| 61 | //The direct EM Model is taken has BetheBloch it is only used for the computation
|
|---|
| 62 | // of the differential cross section.
|
|---|
| 63 | //The Bragg model could be used as an alternative as it offers the same differential cross section
|
|---|
| 64 |
|
|---|
| 65 | theBetheBlochDirectEMModel = new G4BetheBlochModel(G4GenericIon::GenericIon());
|
|---|
| 66 | theBraggIonDirectEMModel = new G4BraggIonModel(G4GenericIon::GenericIon());
|
|---|
| 67 | theAdjEquivOfDirectSecondPartDef=G4AdjointElectron::AdjointElectron();
|
|---|
| 68 | theDirectPrimaryPartDef =0;
|
|---|
| 69 | theAdjEquivOfDirectPrimPartDef =0;
|
|---|
| 70 | /* theDirectPrimaryPartDef =fwd_ion;
|
|---|
| 71 | theAdjEquivOfDirectPrimPartDef =adj_ion;
|
|---|
| 72 |
|
|---|
| 73 | DefineProjectileProperty();*/
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 | }
|
|---|
| 79 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 80 | //
|
|---|
| 81 | G4AdjointIonIonisationModel::~G4AdjointIonIonisationModel()
|
|---|
| 82 | {;}
|
|---|
| 83 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 84 | //
|
|---|
| 85 | void G4AdjointIonIonisationModel::SampleSecondaries(const G4Track& aTrack,
|
|---|
| 86 | G4bool IsScatProjToProjCase,
|
|---|
| 87 | G4ParticleChange* fParticleChange)
|
|---|
| 88 | {
|
|---|
| 89 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 90 |
|
|---|
| 91 | //Elastic inverse scattering
|
|---|
| 92 | //---------------------------------------------------------
|
|---|
| 93 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 94 | G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
|
|---|
| 95 |
|
|---|
| 96 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 97 | return;
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 | //Sample secondary energy
|
|---|
| 101 | //-----------------------
|
|---|
| 102 | G4double projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy, IsScatProjToProjCase);
|
|---|
| 103 | CorrectPostStepWeight(fParticleChange,
|
|---|
| 104 | aTrack.GetWeight(),
|
|---|
| 105 | adjointPrimKinEnergy,
|
|---|
| 106 | projectileKinEnergy,
|
|---|
| 107 | IsScatProjToProjCase); //Caution !!!this weight correction should be always applied
|
|---|
| 108 |
|
|---|
| 109 |
|
|---|
| 110 | //Kinematic:
|
|---|
| 111 | //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
|
|---|
| 112 | // him part of its energy
|
|---|
| 113 | //----------------------------------------------------------------------------------------
|
|---|
| 114 |
|
|---|
| 115 | G4double projectileM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 116 | G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
|
|---|
| 117 | G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
|
|---|
| 118 |
|
|---|
| 119 |
|
|---|
| 120 |
|
|---|
| 121 | //Companion
|
|---|
| 122 | //-----------
|
|---|
| 123 | G4double companionM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 124 | if (IsScatProjToProjCase) {
|
|---|
| 125 | companionM0=theAdjEquivOfDirectSecondPartDef->GetPDGMass();
|
|---|
| 126 | }
|
|---|
| 127 | G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
|
|---|
| 128 | G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
|
|---|
| 129 |
|
|---|
| 130 |
|
|---|
| 131 | //Projectile momentum
|
|---|
| 132 | //--------------------
|
|---|
| 133 | G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
|
|---|
| 134 | G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
|
|---|
| 135 | G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
|
|---|
| 136 | G4double phi =G4UniformRand()*2.*3.1415926;
|
|---|
| 137 | G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
|
|---|
| 138 | projectileMomentum.rotateUz(dir_parallel);
|
|---|
| 139 |
|
|---|
| 140 |
|
|---|
| 141 |
|
|---|
| 142 | if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
|
|---|
| 143 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 144 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
|
|---|
| 145 | //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
|
|---|
| 146 | }
|
|---|
| 147 | else {
|
|---|
| 148 | fParticleChange->ProposeEnergy(projectileKinEnergy);
|
|---|
| 149 | fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 |
|
|---|
| 154 |
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 158 | //
|
|---|
| 159 | G4double G4AdjointIonIonisationModel::DiffCrossSectionPerAtomPrimToSecond(
|
|---|
| 160 | G4double kinEnergyProj,
|
|---|
| 161 | G4double kinEnergyProd,
|
|---|
| 162 | G4double Z,
|
|---|
| 163 | G4double A)
|
|---|
| 164 | {//Probably that here the Bragg Model should be also used for kinEnergyProj/nuc<2MeV
|
|---|
| 165 |
|
|---|
| 166 |
|
|---|
| 167 |
|
|---|
| 168 | G4double dSigmadEprod=0;
|
|---|
| 169 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 170 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 171 |
|
|---|
| 172 | G4double kinEnergyProjScaled = massRatio*kinEnergyProj;
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 | if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
|
|---|
| 176 | G4double Tmax=kinEnergyProj;
|
|---|
| 177 |
|
|---|
| 178 | G4double E1=kinEnergyProd;
|
|---|
| 179 | G4double E2=kinEnergyProd*1.000001;
|
|---|
| 180 | G4double dE=(E2-E1);
|
|---|
| 181 | G4double sigma1,sigma2;
|
|---|
| 182 | theDirectEMModel =theBraggIonDirectEMModel;
|
|---|
| 183 | if (kinEnergyProjScaled >2.*MeV && !use_only_bragg) theDirectEMModel = theBetheBlochDirectEMModel; //Bethe Bloch Model
|
|---|
| 184 | sigma1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
|
|---|
| 185 | sigma2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
|
|---|
| 186 |
|
|---|
| 187 | dSigmadEprod=(sigma1-sigma2)/dE;
|
|---|
| 188 |
|
|---|
| 189 | //G4double chargeSqRatio = currentModel->GetChargeSquareRatio(theDirectPrimaryPartDef,currentMaterial,E);
|
|---|
| 190 |
|
|---|
| 191 |
|
|---|
| 192 |
|
|---|
| 193 | if (dSigmadEprod>1.) {
|
|---|
| 194 | G4cout<<"sigma1 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma1<<G4endl;
|
|---|
| 195 | G4cout<<"sigma2 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma2<<G4endl;
|
|---|
| 196 | G4cout<<"dsigma "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<dSigmadEprod<<G4endl;
|
|---|
| 197 |
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 |
|
|---|
| 201 |
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 |
|
|---|
| 205 | if (theDirectEMModel == theBetheBlochDirectEMModel ){
|
|---|
| 206 | //correction of differential cross section at high energy to correct for the suppression of particle at secondary at high
|
|---|
| 207 | //energy used in the Bethe Bloch Model. This correction consist to multiply by g the probability function used
|
|---|
| 208 | //to test the rejection of a secondary
|
|---|
| 209 | //-------------------------
|
|---|
| 210 |
|
|---|
| 211 | //Source code taken from G4BetheBlochModel::SampleSecondaries
|
|---|
| 212 |
|
|---|
| 213 | G4double deltaKinEnergy = kinEnergyProd;
|
|---|
| 214 |
|
|---|
| 215 | //Part of the taken code
|
|---|
| 216 | //----------------------
|
|---|
| 217 |
|
|---|
| 218 |
|
|---|
| 219 |
|
|---|
| 220 | // projectile formfactor - suppresion of high energy
|
|---|
| 221 | // delta-electron production at high energy
|
|---|
| 222 |
|
|---|
| 223 |
|
|---|
| 224 | G4double x = formfact*deltaKinEnergy;
|
|---|
| 225 | if(x > 1.e-6) {
|
|---|
| 226 | G4double totEnergy = kinEnergyProj + mass;
|
|---|
| 227 | G4double etot2 = totEnergy*totEnergy;
|
|---|
| 228 | G4double beta2 = kinEnergyProj*(kinEnergyProj + 2.0*mass)/etot2;
|
|---|
| 229 | G4double f;
|
|---|
| 230 | G4double f1 = 0.0;
|
|---|
| 231 | f = 1.0 - beta2*deltaKinEnergy/Tmax;
|
|---|
| 232 | if( 0.5 == spin ) {
|
|---|
| 233 | f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
|
|---|
| 234 | f += f1;
|
|---|
| 235 | }
|
|---|
| 236 | G4double x1 = 1.0 + x;
|
|---|
| 237 | G4double g = 1.0/(x1*x1);
|
|---|
| 238 | if( 0.5 == spin ) {
|
|---|
| 239 | G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
|
|---|
| 240 | g *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
|
|---|
| 241 | }
|
|---|
| 242 | if(g > 1.0) {
|
|---|
| 243 | G4cout << "### G4BetheBlochModel in Adjoint Sim WARNING: g= " << g
|
|---|
| 244 | << G4endl;
|
|---|
| 245 | g=1.;
|
|---|
| 246 | }
|
|---|
| 247 | //G4cout<<"g"<<g<<G4endl;
|
|---|
| 248 | dSigmadEprod*=g;
|
|---|
| 249 | }
|
|---|
| 250 | }
|
|---|
| 251 |
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | return dSigmadEprod;
|
|---|
| 255 | }
|
|---|
| 256 | //////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 257 | //
|
|---|
| 258 | void G4AdjointIonIonisationModel::SetIon(G4ParticleDefinition* adj_ion, G4ParticleDefinition* fwd_ion)
|
|---|
| 259 | { theDirectPrimaryPartDef =fwd_ion;
|
|---|
| 260 | theAdjEquivOfDirectPrimPartDef =adj_ion;
|
|---|
| 261 |
|
|---|
| 262 | DefineProjectileProperty();
|
|---|
| 263 | }
|
|---|
| 264 | //////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 265 | //
|
|---|
| 266 | void G4AdjointIonIonisationModel::CorrectPostStepWeight(G4ParticleChange* fParticleChange, G4double old_weight,
|
|---|
| 267 | G4double adjointPrimKinEnergy, G4double projectileKinEnergy,G4bool )
|
|---|
| 268 | {
|
|---|
| 269 | //It is needed because the direct cross section used to compute the differential cross section is not the one used in
|
|---|
| 270 | // the direct model where the GenericIon stuff is considered with correction of effective charge. In the direct model the samnepl of secondaries does
|
|---|
| 271 | // not reflect the integral cross section. The integral fwd cross section that we used to compute the differential CS
|
|---|
| 272 | // match the sample of secondaries in the forward case despite the fact that its is not the same total CS than in the FWD case. For this reasion an extra
|
|---|
| 273 | // weight correction is needed at the end.
|
|---|
| 274 |
|
|---|
| 275 |
|
|---|
| 276 | G4double new_weight=old_weight;
|
|---|
| 277 |
|
|---|
| 278 | //the correction of CS due to the problem explained above
|
|---|
| 279 | G4double kinEnergyProjScaled = massRatio*projectileKinEnergy;
|
|---|
| 280 | theDirectEMModel =theBraggIonDirectEMModel;
|
|---|
| 281 | if (kinEnergyProjScaled >2.*MeV && !use_only_bragg) theDirectEMModel = theBetheBlochDirectEMModel; //Bethe Bloch Model
|
|---|
| 282 | G4double UsedFwdCS=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,projectileKinEnergy,1,1 ,currentTcutForDirectSecond,1.e20);
|
|---|
| 283 | G4double chargeSqRatio =1.;
|
|---|
| 284 | if (chargeSquare>1.) chargeSqRatio = theDirectEMModel->GetChargeSquareRatio(theDirectPrimaryPartDef,currentMaterial,projectileKinEnergy);
|
|---|
| 285 | G4double CorrectFwdCS = chargeSqRatio*theDirectEMModel->ComputeCrossSectionPerAtom(G4GenericIon::GenericIon(),kinEnergyProjScaled,1,1 ,currentTcutForDirectSecond,1.e20);
|
|---|
| 286 | if (UsedFwdCS >0) new_weight*= CorrectFwdCS/UsedFwdCS;//May be some check is needed if UsedFwdCS ==0 probably that then we should avoid a secondary to be produced,
|
|---|
| 287 |
|
|---|
| 288 |
|
|---|
| 289 | //additional CS crorrection needed for cross section biasing in general.
|
|---|
| 290 | //May be wrong for ions!!! Most of the time not used!
|
|---|
| 291 | G4double w_corr =1./CS_biasing_factor;
|
|---|
| 292 | w_corr*=G4AdjointCSManager::GetAdjointCSManager()->GetPostStepWeightCorrection();
|
|---|
| 293 | new_weight*=w_corr;
|
|---|
| 294 |
|
|---|
| 295 | new_weight*=projectileKinEnergy/adjointPrimKinEnergy;
|
|---|
| 296 |
|
|---|
| 297 | fParticleChange->SetParentWeightByProcess(false);
|
|---|
| 298 | fParticleChange->SetSecondaryWeightByProcess(false);
|
|---|
| 299 | fParticleChange->ProposeParentWeight(new_weight);
|
|---|
| 300 | }
|
|---|
| 301 |
|
|---|
| 302 |
|
|---|
| 303 | //////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 304 | //
|
|---|
| 305 | void G4AdjointIonIonisationModel::DefineProjectileProperty()
|
|---|
| 306 | {
|
|---|
| 307 | //Slightly modified code taken from G4BetheBlochModel::SetParticle
|
|---|
| 308 | //------------------------------------------------
|
|---|
| 309 | G4String pname = theDirectPrimaryPartDef->GetParticleName();
|
|---|
| 310 | if (theDirectPrimaryPartDef->GetParticleType() == "nucleus" &&
|
|---|
| 311 | pname != "deuteron" && pname != "triton") {
|
|---|
| 312 | isIon = true;
|
|---|
| 313 | }
|
|---|
| 314 |
|
|---|
| 315 | mass = theDirectPrimaryPartDef->GetPDGMass();
|
|---|
| 316 | massRatio= G4GenericIon::GenericIon()->GetPDGMass()/mass;
|
|---|
| 317 | spin = theDirectPrimaryPartDef->GetPDGSpin();
|
|---|
| 318 | G4double q = theDirectPrimaryPartDef->GetPDGCharge()/eplus;
|
|---|
| 319 | chargeSquare = q*q;
|
|---|
| 320 | ratio = electron_mass_c2/mass;
|
|---|
| 321 | ratio2 = ratio*ratio;
|
|---|
| 322 | one_plus_ratio_2=(1+ratio)*(1+ratio);
|
|---|
| 323 | one_minus_ratio_2=(1-ratio)*(1-ratio);
|
|---|
| 324 | G4double magmom = theDirectPrimaryPartDef->GetPDGMagneticMoment()
|
|---|
| 325 | *mass/(0.5*eplus*hbar_Planck*c_squared);
|
|---|
| 326 | magMoment2 = magmom*magmom - 1.0;
|
|---|
| 327 | formfact = 0.0;
|
|---|
| 328 | if(theDirectPrimaryPartDef->GetLeptonNumber() == 0) {
|
|---|
| 329 | G4double x = 0.8426*GeV;
|
|---|
| 330 | if(spin == 0.0 && mass < GeV) {x = 0.736*GeV;}
|
|---|
| 331 | else if(mass > GeV) {
|
|---|
| 332 | x /= G4NistManager::Instance()->GetZ13(mass/proton_mass_c2);
|
|---|
| 333 | // tlimit = 51.2*GeV*A13[iz]*A13[iz];
|
|---|
| 334 | }
|
|---|
| 335 | formfact = 2.0*electron_mass_c2/(x*x);
|
|---|
| 336 | tlimit = 2.0/formfact;
|
|---|
| 337 | }
|
|---|
| 338 | }
|
|---|
| 339 |
|
|---|
| 340 |
|
|---|
| 341 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 342 | //
|
|---|
| 343 | G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMaxForScatProjToProjCase(G4double PrimAdjEnergy)
|
|---|
| 344 | {
|
|---|
| 345 | G4double Tmax=PrimAdjEnergy*one_plus_ratio_2/(one_minus_ratio_2-2.*ratio*PrimAdjEnergy/mass);
|
|---|
| 346 | return Tmax;
|
|---|
| 347 | }
|
|---|
| 348 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 349 | //
|
|---|
| 350 | G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMinForScatProjToProjCase(G4double PrimAdjEnergy,G4double Tcut)
|
|---|
| 351 | { return PrimAdjEnergy+Tcut;
|
|---|
| 352 | }
|
|---|
| 353 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 354 | //
|
|---|
| 355 | G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMaxForProdToProjCase(G4double )
|
|---|
| 356 | { return HighEnergyLimit;
|
|---|
| 357 | }
|
|---|
| 358 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 359 | //
|
|---|
| 360 | G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
|
|---|
| 361 | { G4double Tmin= (2*PrimAdjEnergy-4*mass + std::sqrt(4.*PrimAdjEnergy*PrimAdjEnergy +16.*mass*mass + 8.*PrimAdjEnergy*mass*(1/ratio +ratio)))/4.;
|
|---|
| 362 | return Tmin;
|
|---|
| 363 | }
|
|---|