source: trunk/source/processes/electromagnetic/adjoint/src/G4AdjointeIonisationModel.cc@ 1340

Last change on this file since 1340 was 1337, checked in by garnier, 15 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 8.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4AdjointeIonisationModel.cc,v 1.2 2009/11/20 10:31:20 ldesorgh Exp $
27// GEANT4 tag $Name: geant4-09-04-beta-01 $
28//
29#include "G4AdjointeIonisationModel.hh"
30#include "G4AdjointCSManager.hh"
31
32
33#include "G4Integrator.hh"
34#include "G4TrackStatus.hh"
35#include "G4ParticleChange.hh"
36#include "G4AdjointElectron.hh"
37#include "G4Gamma.hh"
38#include "G4AdjointGamma.hh"
39
40
41////////////////////////////////////////////////////////////////////////////////
42//
43G4AdjointeIonisationModel::G4AdjointeIonisationModel():
44 G4VEmAdjointModel("Inv_eIon_model")
45
46{
47
48 UseMatrix =true;
49 UseMatrixPerElement = true;
50 ApplyCutInRange = true;
51 UseOnlyOneMatrixForAllElements = true;
52 CS_biasing_factor =1.;
53 WithRapidSampling = false;
54
55 theAdjEquivOfDirectPrimPartDef =G4AdjointElectron::AdjointElectron();
56 theAdjEquivOfDirectSecondPartDef=G4AdjointElectron::AdjointElectron();
57 theDirectPrimaryPartDef=G4Electron::Electron();
58 second_part_of_same_type=true;
59}
60////////////////////////////////////////////////////////////////////////////////
61//
62G4AdjointeIonisationModel::~G4AdjointeIonisationModel()
63{;}
64////////////////////////////////////////////////////////////////////////////////
65//
66void G4AdjointeIonisationModel::SampleSecondaries(const G4Track& aTrack,
67 G4bool IsScatProjToProjCase,
68 G4ParticleChange* fParticleChange)
69{
70
71
72 const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
73
74 //Elastic inverse scattering
75 //---------------------------------------------------------
76 G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
77 G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
78
79 if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
80 return;
81 }
82
83 //Sample secondary energy
84 //-----------------------
85 G4double projectileKinEnergy;
86 if (!WithRapidSampling ) { //used by default
87 projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy, IsScatProjToProjCase);
88
89 CorrectPostStepWeight(fParticleChange,
90 aTrack.GetWeight(),
91 adjointPrimKinEnergy,
92 projectileKinEnergy,
93 IsScatProjToProjCase); //Caution !!!this weight correction should be always applied
94 }
95 else { //only for test at the moment
96
97 G4double Emin,Emax;
98 if (IsScatProjToProjCase) {
99 Emin=GetSecondAdjEnergyMinForScatProjToProjCase(adjointPrimKinEnergy,currentTcutForDirectSecond);
100 Emax=GetSecondAdjEnergyMaxForScatProjToProjCase(adjointPrimKinEnergy);
101 }
102 else {
103 Emin=GetSecondAdjEnergyMinForProdToProjCase(adjointPrimKinEnergy);
104 Emax=GetSecondAdjEnergyMaxForProdToProjCase(adjointPrimKinEnergy);
105 }
106 projectileKinEnergy = Emin*std::pow(Emax/Emin,G4UniformRand());
107
108
109
110 lastCS=lastAdjointCSForScatProjToProjCase;
111 if ( !IsScatProjToProjCase) lastCS=lastAdjointCSForProdToProjCase;
112
113 G4double new_weight=aTrack.GetWeight();
114 G4double used_diffCS=lastCS*std::log(Emax/Emin)/projectileKinEnergy;
115 G4double needed_diffCS=adjointPrimKinEnergy/projectileKinEnergy;
116 if (!IsScatProjToProjCase) needed_diffCS *=DiffCrossSectionPerVolumePrimToSecond(currentMaterial,projectileKinEnergy,adjointPrimKinEnergy);
117 else needed_diffCS *=DiffCrossSectionPerVolumePrimToScatPrim(currentMaterial,projectileKinEnergy,adjointPrimKinEnergy);
118 new_weight*=needed_diffCS/used_diffCS;
119 fParticleChange->SetParentWeightByProcess(false);
120 fParticleChange->SetSecondaryWeightByProcess(false);
121 fParticleChange->ProposeParentWeight(new_weight);
122
123
124 }
125
126
127
128 //Kinematic:
129 //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
130 // him part of its energy
131 //----------------------------------------------------------------------------------------
132
133 G4double projectileM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
134 G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
135 G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
136
137
138
139 //Companion
140 //-----------
141 G4double companionM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
142 if (IsScatProjToProjCase) {
143 companionM0=theAdjEquivOfDirectSecondPartDef->GetPDGMass();
144 }
145 G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
146 G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
147
148
149 //Projectile momentum
150 //--------------------
151 G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
152 G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
153 G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
154 G4double phi =G4UniformRand()*2.*3.1415926;
155 G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
156 projectileMomentum.rotateUz(dir_parallel);
157
158
159
160 if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
161 fParticleChange->ProposeTrackStatus(fStopAndKill);
162 fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
163 //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
164 }
165 else {
166 fParticleChange->ProposeEnergy(projectileKinEnergy);
167 fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
168 }
169
170
171
172
173}
174////////////////////////////////////////////////////////////////////////////////
175//
176//The implementation here is correct for energy loss process, for the photoelectric and compton scattering the method should be redefine
177G4double G4AdjointeIonisationModel::DiffCrossSectionPerAtomPrimToSecond(
178 G4double kinEnergyProj,
179 G4double kinEnergyProd,
180 G4double Z,
181 G4double )
182{
183 G4double dSigmadEprod=0;
184 G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
185 G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
186
187
188 if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
189 dSigmadEprod=Z*DiffCrossSectionMoller(kinEnergyProj,kinEnergyProd);
190 }
191 return dSigmadEprod;
192
193
194
195}
196
197//////////////////////////////////////////////////////////////////////////////
198//
199G4double G4AdjointeIonisationModel::DiffCrossSectionMoller(G4double kinEnergyProj,G4double kinEnergyProd){
200 G4double electron_mass_c2=0.51099906*MeV;
201 G4double energy = kinEnergyProj + electron_mass_c2;
202 G4double x = kinEnergyProd/kinEnergyProj;
203 G4double gam = energy/electron_mass_c2;
204 G4double gamma2 = gam*gam;
205 G4double beta2 = 1.0 - 1.0/gamma2;
206
207 G4double g = (2.0*gam - 1.0)/gamma2;
208 G4double y = 1.0 - x;
209 G4double fac=twopi_mc2_rcl2/electron_mass_c2;
210 G4double dCS = fac*( 1.-g + ((1.0 - g*x)/(x*x)) + ((1.0 - g*y)/(y*y)))/(beta2*(gam-1));
211 return dCS/kinEnergyProj;
212
213
214
215}
216
Note: See TracBrowser for help on using the repository browser.