| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4AdjointhIonisationModel.cc,v 1.2 2009/11/20 10:31:20 ldesorgh Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | #include "G4AdjointhIonisationModel.hh"
|
|---|
| 30 | #include "G4AdjointCSManager.hh"
|
|---|
| 31 | #include "G4Integrator.hh"
|
|---|
| 32 | #include "G4TrackStatus.hh"
|
|---|
| 33 | #include "G4ParticleChange.hh"
|
|---|
| 34 | #include "G4AdjointElectron.hh"
|
|---|
| 35 | #include "G4AdjointProton.hh"
|
|---|
| 36 | #include "G4AdjointInterpolator.hh"
|
|---|
| 37 | #include "G4BetheBlochModel.hh"
|
|---|
| 38 | #include "G4BraggModel.hh"
|
|---|
| 39 | #include "G4Proton.hh"
|
|---|
| 40 | #include "G4NistManager.hh"
|
|---|
| 41 |
|
|---|
| 42 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 43 | //
|
|---|
| 44 | G4AdjointhIonisationModel::G4AdjointhIonisationModel(G4ParticleDefinition* projectileDefinition):
|
|---|
| 45 | G4VEmAdjointModel("Adjoint_hIonisation")
|
|---|
| 46 | {
|
|---|
| 47 |
|
|---|
| 48 |
|
|---|
| 49 |
|
|---|
| 50 | UseMatrix =true;
|
|---|
| 51 | UseMatrixPerElement = true;
|
|---|
| 52 | ApplyCutInRange = true;
|
|---|
| 53 | UseOnlyOneMatrixForAllElements = true;
|
|---|
| 54 | CS_biasing_factor =1.;
|
|---|
| 55 | second_part_of_same_type =false;
|
|---|
| 56 |
|
|---|
| 57 | //The direct EM Modfel is taken has BetheBloch it is only used for the computation
|
|---|
| 58 | // of the differential cross section.
|
|---|
| 59 | //The Bragg model could be used as an alternative as it offers the same differential cross section
|
|---|
| 60 |
|
|---|
| 61 | theDirectEMModel = new G4BetheBlochModel(projectileDefinition);
|
|---|
| 62 | theBraggDirectEMModel = new G4BraggModel(projectileDefinition);
|
|---|
| 63 | theAdjEquivOfDirectSecondPartDef=G4AdjointElectron::AdjointElectron();
|
|---|
| 64 |
|
|---|
| 65 | theDirectPrimaryPartDef = projectileDefinition;
|
|---|
| 66 | if (projectileDefinition == G4Proton::Proton()) {
|
|---|
| 67 | theAdjEquivOfDirectPrimPartDef = G4AdjointProton::AdjointProton();
|
|---|
| 68 |
|
|---|
| 69 | }
|
|---|
| 70 |
|
|---|
| 71 | DefineProjectileProperty();
|
|---|
| 72 |
|
|---|
| 73 |
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 |
|
|---|
| 79 |
|
|---|
| 80 | }
|
|---|
| 81 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 82 | //
|
|---|
| 83 | G4AdjointhIonisationModel::~G4AdjointhIonisationModel()
|
|---|
| 84 | {;}
|
|---|
| 85 |
|
|---|
| 86 |
|
|---|
| 87 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 88 | //
|
|---|
| 89 | void G4AdjointhIonisationModel::SampleSecondaries(const G4Track& aTrack,
|
|---|
| 90 | G4bool IsScatProjToProjCase,
|
|---|
| 91 | G4ParticleChange* fParticleChange)
|
|---|
| 92 | {
|
|---|
| 93 | if (!UseMatrix) return RapidSampleSecondaries(aTrack,IsScatProjToProjCase,fParticleChange);
|
|---|
| 94 |
|
|---|
| 95 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 96 |
|
|---|
| 97 | //Elastic inverse scattering
|
|---|
| 98 | //---------------------------------------------------------
|
|---|
| 99 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 100 | G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
|
|---|
| 101 |
|
|---|
| 102 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 103 | return;
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | //Sample secondary energy
|
|---|
| 107 | //-----------------------
|
|---|
| 108 | G4double projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy, IsScatProjToProjCase);
|
|---|
| 109 | CorrectPostStepWeight(fParticleChange,
|
|---|
| 110 | aTrack.GetWeight(),
|
|---|
| 111 | adjointPrimKinEnergy,
|
|---|
| 112 | projectileKinEnergy,
|
|---|
| 113 | IsScatProjToProjCase); //Caution !!!this weight correction should be always applied
|
|---|
| 114 |
|
|---|
| 115 |
|
|---|
| 116 | //Kinematic:
|
|---|
| 117 | //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
|
|---|
| 118 | // him part of its energy
|
|---|
| 119 | //----------------------------------------------------------------------------------------
|
|---|
| 120 |
|
|---|
| 121 | G4double projectileM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 122 | G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
|
|---|
| 123 | G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
|
|---|
| 124 |
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | //Companion
|
|---|
| 128 | //-----------
|
|---|
| 129 | G4double companionM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 130 | if (IsScatProjToProjCase) {
|
|---|
| 131 | companionM0=theAdjEquivOfDirectSecondPartDef->GetPDGMass();
|
|---|
| 132 | }
|
|---|
| 133 | G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
|
|---|
| 134 | G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 | //Projectile momentum
|
|---|
| 138 | //--------------------
|
|---|
| 139 | G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
|
|---|
| 140 | G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
|
|---|
| 141 | G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
|
|---|
| 142 | G4double phi =G4UniformRand()*2.*3.1415926;
|
|---|
| 143 | G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
|
|---|
| 144 | projectileMomentum.rotateUz(dir_parallel);
|
|---|
| 145 |
|
|---|
| 146 |
|
|---|
| 147 |
|
|---|
| 148 | if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
|
|---|
| 149 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 150 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
|
|---|
| 151 | //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
|
|---|
| 152 | }
|
|---|
| 153 | else {
|
|---|
| 154 | fParticleChange->ProposeEnergy(projectileKinEnergy);
|
|---|
| 155 | fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
|
|---|
| 156 | }
|
|---|
| 157 |
|
|---|
| 158 |
|
|---|
| 159 |
|
|---|
| 160 |
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 164 | //
|
|---|
| 165 | void G4AdjointhIonisationModel::RapidSampleSecondaries(const G4Track& aTrack,
|
|---|
| 166 | G4bool IsScatProjToProjCase,
|
|---|
| 167 | G4ParticleChange* fParticleChange)
|
|---|
| 168 | {
|
|---|
| 169 |
|
|---|
| 170 | const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
|
|---|
| 171 | DefineCurrentMaterial(aTrack.GetMaterialCutsCouple());
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 | G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
|
|---|
| 175 | G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
|
|---|
| 176 |
|
|---|
| 177 | if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
|
|---|
| 178 | return;
|
|---|
| 179 | }
|
|---|
| 180 |
|
|---|
| 181 | G4double projectileKinEnergy =0.;
|
|---|
| 182 | G4double eEnergy=0.;
|
|---|
| 183 | G4double newCS=currentMaterial->GetElectronDensity()*twopi_mc2_rcl2*mass;
|
|---|
| 184 | if (!IsScatProjToProjCase){//1/E^2 distribution
|
|---|
| 185 |
|
|---|
| 186 | eEnergy=adjointPrimKinEnergy;
|
|---|
| 187 | G4double Emax = GetSecondAdjEnergyMaxForProdToProjCase(adjointPrimKinEnergy);
|
|---|
| 188 | G4double Emin= GetSecondAdjEnergyMinForProdToProjCase(adjointPrimKinEnergy);
|
|---|
| 189 | if (Emin>=Emax) return;
|
|---|
| 190 | G4double a=1./Emax;
|
|---|
| 191 | G4double b=1./Emin;
|
|---|
| 192 | newCS=newCS*(b-a)/eEnergy;
|
|---|
| 193 |
|
|---|
| 194 | projectileKinEnergy =1./(b- (b-a)*G4UniformRand());
|
|---|
| 195 |
|
|---|
| 196 |
|
|---|
| 197 | }
|
|---|
| 198 | else { G4double Emax = GetSecondAdjEnergyMaxForScatProjToProjCase(adjointPrimKinEnergy);
|
|---|
| 199 | G4double Emin = GetSecondAdjEnergyMinForScatProjToProjCase(adjointPrimKinEnergy,currentTcutForDirectSecond);
|
|---|
| 200 | if (Emin>=Emax) return;
|
|---|
| 201 | G4double diff1=Emin-adjointPrimKinEnergy;
|
|---|
| 202 | G4double diff2=Emax-adjointPrimKinEnergy;
|
|---|
| 203 |
|
|---|
| 204 | G4double t1=adjointPrimKinEnergy*(1./diff1-1./diff2);
|
|---|
| 205 | G4double t2=adjointPrimKinEnergy*(1./Emin-1./Emax);
|
|---|
| 206 | G4double f31=diff1/Emin;
|
|---|
| 207 | G4double f32=diff2/Emax/f31;
|
|---|
| 208 | G4double t3=2.*log(f32);
|
|---|
| 209 | G4double sum_t=t1+t2+t3;
|
|---|
| 210 | newCS=newCS*sum_t/adjointPrimKinEnergy/adjointPrimKinEnergy;
|
|---|
| 211 | G4double t=G4UniformRand()*sum_t;
|
|---|
| 212 | if (t <=t1 ){
|
|---|
| 213 | G4double q= G4UniformRand()*t1/adjointPrimKinEnergy ;
|
|---|
| 214 | projectileKinEnergy =adjointPrimKinEnergy +1./(1./diff1-q);
|
|---|
| 215 |
|
|---|
| 216 | }
|
|---|
| 217 | else if (t <=t2 ) {
|
|---|
| 218 | G4double q= G4UniformRand()*t2/adjointPrimKinEnergy;
|
|---|
| 219 | projectileKinEnergy =1./(1./Emin-q);
|
|---|
| 220 | }
|
|---|
| 221 | else {
|
|---|
| 222 | projectileKinEnergy=adjointPrimKinEnergy/(1.-f31*pow(f32,G4UniformRand()));
|
|---|
| 223 |
|
|---|
| 224 | }
|
|---|
| 225 | eEnergy=projectileKinEnergy-adjointPrimKinEnergy;
|
|---|
| 226 |
|
|---|
| 227 |
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 |
|
|---|
| 231 |
|
|---|
| 232 | G4double diffCS_perAtom_Used=twopi_mc2_rcl2*mass*adjointPrimKinEnergy/projectileKinEnergy/projectileKinEnergy/eEnergy/eEnergy;
|
|---|
| 233 |
|
|---|
| 234 |
|
|---|
| 235 |
|
|---|
| 236 | //Weight correction
|
|---|
| 237 | //-----------------------
|
|---|
| 238 | //First w_corr is set to the ratio between adjoint total CS and fwd total CS
|
|---|
| 239 | G4double w_corr=G4AdjointCSManager::GetAdjointCSManager()->GetPostStepWeightCorrection();
|
|---|
| 240 |
|
|---|
| 241 | //G4cout<<w_corr<<G4endl;
|
|---|
| 242 | w_corr*=newCS/lastCS;
|
|---|
| 243 | //G4cout<<w_corr<<G4endl;
|
|---|
| 244 | //Then another correction is needed due to the fact that a biaised differential CS has been used rather than the one consistent with the direct model
|
|---|
| 245 | //Here we consider the true diffCS as the one obtained by the numerical differentiation over Tcut of the direct CS
|
|---|
| 246 |
|
|---|
| 247 | G4double diffCS = DiffCrossSectionPerAtomPrimToSecond(projectileKinEnergy, eEnergy,1,1);
|
|---|
| 248 | w_corr*=diffCS/diffCS_perAtom_Used;
|
|---|
| 249 | //G4cout<<w_corr<<G4endl;
|
|---|
| 250 |
|
|---|
| 251 | G4double new_weight = aTrack.GetWeight()*w_corr;
|
|---|
| 252 | fParticleChange->SetParentWeightByProcess(false);
|
|---|
| 253 | fParticleChange->SetSecondaryWeightByProcess(false);
|
|---|
| 254 | fParticleChange->ProposeParentWeight(new_weight);
|
|---|
| 255 |
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 |
|
|---|
| 259 | //Kinematic:
|
|---|
| 260 | //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
|
|---|
| 261 | // him part of its energy
|
|---|
| 262 | //----------------------------------------------------------------------------------------
|
|---|
| 263 |
|
|---|
| 264 | G4double projectileM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 265 | G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
|
|---|
| 266 | G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
|
|---|
| 267 |
|
|---|
| 268 |
|
|---|
| 269 |
|
|---|
| 270 | //Companion
|
|---|
| 271 | //-----------
|
|---|
| 272 | G4double companionM0 = theAdjEquivOfDirectPrimPartDef->GetPDGMass();
|
|---|
| 273 | if (IsScatProjToProjCase) {
|
|---|
| 274 | companionM0=theAdjEquivOfDirectSecondPartDef->GetPDGMass();
|
|---|
| 275 | }
|
|---|
| 276 | G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
|
|---|
| 277 | G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
|
|---|
| 278 |
|
|---|
| 279 |
|
|---|
| 280 | //Projectile momentum
|
|---|
| 281 | //--------------------
|
|---|
| 282 | G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
|
|---|
| 283 | G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
|
|---|
| 284 | G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
|
|---|
| 285 | G4double phi =G4UniformRand()*2.*3.1415926;
|
|---|
| 286 | G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
|
|---|
| 287 | projectileMomentum.rotateUz(dir_parallel);
|
|---|
| 288 |
|
|---|
| 289 |
|
|---|
| 290 |
|
|---|
| 291 | if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
|
|---|
| 292 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 293 | fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
|
|---|
| 294 | //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
|
|---|
| 295 | }
|
|---|
| 296 | else {
|
|---|
| 297 | fParticleChange->ProposeEnergy(projectileKinEnergy);
|
|---|
| 298 | fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
|
|---|
| 299 | }
|
|---|
| 300 |
|
|---|
| 301 |
|
|---|
| 302 |
|
|---|
| 303 |
|
|---|
| 304 |
|
|---|
| 305 |
|
|---|
| 306 |
|
|---|
| 307 | }
|
|---|
| 308 |
|
|---|
| 309 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 310 | //
|
|---|
| 311 | G4double G4AdjointhIonisationModel::DiffCrossSectionPerAtomPrimToSecond(
|
|---|
| 312 | G4double kinEnergyProj,
|
|---|
| 313 | G4double kinEnergyProd,
|
|---|
| 314 | G4double Z,
|
|---|
| 315 | G4double A)
|
|---|
| 316 | {//Probably that here the Bragg Model should be also used for kinEnergyProj/nuc<2MeV
|
|---|
| 317 |
|
|---|
| 318 |
|
|---|
| 319 |
|
|---|
| 320 | G4double dSigmadEprod=0;
|
|---|
| 321 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 322 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 323 |
|
|---|
| 324 |
|
|---|
| 325 | if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
|
|---|
| 326 | G4double Tmax=kinEnergyProj;
|
|---|
| 327 |
|
|---|
| 328 | G4double E1=kinEnergyProd;
|
|---|
| 329 | G4double E2=kinEnergyProd*1.000001;
|
|---|
| 330 | G4double dE=(E2-E1);
|
|---|
| 331 | G4double sigma1,sigma2;
|
|---|
| 332 | if (kinEnergyProj >2.*MeV){
|
|---|
| 333 | sigma1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
|
|---|
| 334 | sigma2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
|
|---|
| 335 | }
|
|---|
| 336 | else {
|
|---|
| 337 | sigma1=theBraggDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
|
|---|
| 338 | sigma2=theBraggDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
|
|---|
| 339 | }
|
|---|
| 340 |
|
|---|
| 341 |
|
|---|
| 342 | dSigmadEprod=(sigma1-sigma2)/dE;
|
|---|
| 343 | if (dSigmadEprod>1.) {
|
|---|
| 344 | G4cout<<"sigma1 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma1<<G4endl;
|
|---|
| 345 | G4cout<<"sigma2 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma2<<G4endl;
|
|---|
| 346 | G4cout<<"dsigma "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<dSigmadEprod<<G4endl;
|
|---|
| 347 |
|
|---|
| 348 | }
|
|---|
| 349 |
|
|---|
| 350 |
|
|---|
| 351 |
|
|---|
| 352 | //correction of differential cross section at high energy to correct for the suppression of particle at secondary at high
|
|---|
| 353 | //energy used in the Bethe Bloch Model. This correction consist to multiply by g the probability function used
|
|---|
| 354 | //to test the rejection of a secondary
|
|---|
| 355 | //-------------------------
|
|---|
| 356 |
|
|---|
| 357 | //Source code taken from G4BetheBlochModel::SampleSecondaries
|
|---|
| 358 |
|
|---|
| 359 | G4double deltaKinEnergy = kinEnergyProd;
|
|---|
| 360 |
|
|---|
| 361 | //Part of the taken code
|
|---|
| 362 | //----------------------
|
|---|
| 363 |
|
|---|
| 364 |
|
|---|
| 365 |
|
|---|
| 366 | // projectile formfactor - suppresion of high energy
|
|---|
| 367 | // delta-electron production at high energy
|
|---|
| 368 | G4double x = formfact*deltaKinEnergy;
|
|---|
| 369 | if(x > 1.e-6) {
|
|---|
| 370 |
|
|---|
| 371 |
|
|---|
| 372 | G4double totEnergy = kinEnergyProj + mass;
|
|---|
| 373 | G4double etot2 = totEnergy*totEnergy;
|
|---|
| 374 | G4double beta2 = kinEnergyProj*(kinEnergyProj + 2.0*mass)/etot2;
|
|---|
| 375 | G4double f;
|
|---|
| 376 | G4double f1 = 0.0;
|
|---|
| 377 | f = 1.0 - beta2*deltaKinEnergy/Tmax;
|
|---|
| 378 | if( 0.5 == spin ) {
|
|---|
| 379 | f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
|
|---|
| 380 | f += f1;
|
|---|
| 381 | }
|
|---|
| 382 | G4double x1 = 1.0 + x;
|
|---|
| 383 | G4double g = 1.0/(x1*x1);
|
|---|
| 384 | if( 0.5 == spin ) {
|
|---|
| 385 | G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
|
|---|
| 386 | g *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
|
|---|
| 387 | }
|
|---|
| 388 | if(g > 1.0) {
|
|---|
| 389 | G4cout << "### G4BetheBlochModel in Adjoint Sim WARNING: g= " << g
|
|---|
| 390 | << G4endl;
|
|---|
| 391 | g=1.;
|
|---|
| 392 | }
|
|---|
| 393 | //G4cout<<"g"<<g<<G4endl;
|
|---|
| 394 | dSigmadEprod*=g;
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 | }
|
|---|
| 398 |
|
|---|
| 399 | return dSigmadEprod;
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 |
|
|---|
| 403 |
|
|---|
| 404 | //////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 405 | //
|
|---|
| 406 | void G4AdjointhIonisationModel::DefineProjectileProperty()
|
|---|
| 407 | {
|
|---|
| 408 | //Slightly modified code taken from G4BetheBlochModel::SetParticle
|
|---|
| 409 | //------------------------------------------------
|
|---|
| 410 | G4String pname = theDirectPrimaryPartDef->GetParticleName();
|
|---|
| 411 | if (theDirectPrimaryPartDef->GetParticleType() == "nucleus" &&
|
|---|
| 412 | pname != "deuteron" && pname != "triton") {
|
|---|
| 413 | isIon = true;
|
|---|
| 414 | }
|
|---|
| 415 |
|
|---|
| 416 | mass = theDirectPrimaryPartDef->GetPDGMass();
|
|---|
| 417 | spin = theDirectPrimaryPartDef->GetPDGSpin();
|
|---|
| 418 | G4double q = theDirectPrimaryPartDef->GetPDGCharge()/eplus;
|
|---|
| 419 | chargeSquare = q*q;
|
|---|
| 420 | ratio = electron_mass_c2/mass;
|
|---|
| 421 | ratio2 = ratio*ratio;
|
|---|
| 422 | one_plus_ratio_2=(1+ratio)*(1+ratio);
|
|---|
| 423 | one_minus_ratio_2=(1-ratio)*(1-ratio);
|
|---|
| 424 | G4double magmom = theDirectPrimaryPartDef->GetPDGMagneticMoment()
|
|---|
| 425 | *mass/(0.5*eplus*hbar_Planck*c_squared);
|
|---|
| 426 | magMoment2 = magmom*magmom - 1.0;
|
|---|
| 427 | formfact = 0.0;
|
|---|
| 428 | if(theDirectPrimaryPartDef->GetLeptonNumber() == 0) {
|
|---|
| 429 | G4double x = 0.8426*GeV;
|
|---|
| 430 | if(spin == 0.0 && mass < GeV) {x = 0.736*GeV;}
|
|---|
| 431 | else if(mass > GeV) {
|
|---|
| 432 | x /= G4NistManager::Instance()->GetZ13(mass/proton_mass_c2);
|
|---|
| 433 | // tlimit = 51.2*GeV*A13[iz]*A13[iz];
|
|---|
| 434 | }
|
|---|
| 435 | formfact = 2.0*electron_mass_c2/(x*x);
|
|---|
| 436 | tlimit = 2.0/formfact;
|
|---|
| 437 | }
|
|---|
| 438 | }
|
|---|
| 439 |
|
|---|
| 440 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 441 | //
|
|---|
| 442 | G4double G4AdjointhIonisationModel::AdjointCrossSection(const G4MaterialCutsCouple* aCouple,
|
|---|
| 443 | G4double primEnergy,
|
|---|
| 444 | G4bool IsScatProjToProjCase)
|
|---|
| 445 | {
|
|---|
| 446 | if (UseMatrix) return G4VEmAdjointModel::AdjointCrossSection(aCouple,primEnergy,IsScatProjToProjCase);
|
|---|
| 447 | DefineCurrentMaterial(aCouple);
|
|---|
| 448 |
|
|---|
| 449 |
|
|---|
| 450 | G4double Cross=currentMaterial->GetElectronDensity()*twopi_mc2_rcl2*mass;
|
|---|
| 451 |
|
|---|
| 452 | if (!IsScatProjToProjCase ){
|
|---|
| 453 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(primEnergy);
|
|---|
| 454 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(primEnergy);
|
|---|
| 455 | if (Emax_proj>Emin_proj && primEnergy > currentTcutForDirectSecond) {
|
|---|
| 456 | Cross*=(1./Emin_proj -1./Emax_proj)/primEnergy;
|
|---|
| 457 | }
|
|---|
| 458 | else Cross=0.;
|
|---|
| 459 |
|
|---|
| 460 |
|
|---|
| 461 |
|
|---|
| 462 |
|
|---|
| 463 |
|
|---|
| 464 |
|
|---|
| 465 | }
|
|---|
| 466 | else {
|
|---|
| 467 | G4double Emax_proj = GetSecondAdjEnergyMaxForScatProjToProjCase(primEnergy);
|
|---|
| 468 | G4double Emin_proj = GetSecondAdjEnergyMinForScatProjToProjCase(primEnergy,currentTcutForDirectSecond);
|
|---|
| 469 | G4double diff1=Emin_proj-primEnergy;
|
|---|
| 470 | G4double diff2=Emax_proj-primEnergy;
|
|---|
| 471 | G4double t1=(1./diff1+1./Emin_proj-1./diff2-1./Emax_proj)/primEnergy;
|
|---|
| 472 | G4double t2=2.*log(diff2*Emin_proj/Emax_proj/diff1)/primEnergy/primEnergy;
|
|---|
| 473 | Cross*=(t1+t2);
|
|---|
| 474 |
|
|---|
| 475 |
|
|---|
| 476 | }
|
|---|
| 477 | lastCS =Cross;
|
|---|
| 478 | return Cross;
|
|---|
| 479 | }
|
|---|
| 480 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 481 | //
|
|---|
| 482 | G4double G4AdjointhIonisationModel::GetSecondAdjEnergyMaxForScatProjToProjCase(G4double PrimAdjEnergy)
|
|---|
| 483 | {
|
|---|
| 484 | G4double Tmax=PrimAdjEnergy*one_plus_ratio_2/(one_minus_ratio_2-2.*ratio*PrimAdjEnergy/mass);
|
|---|
| 485 | return Tmax;
|
|---|
| 486 | }
|
|---|
| 487 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 488 | //
|
|---|
| 489 | G4double G4AdjointhIonisationModel::GetSecondAdjEnergyMinForScatProjToProjCase(G4double PrimAdjEnergy,G4double Tcut)
|
|---|
| 490 | { return PrimAdjEnergy+Tcut;
|
|---|
| 491 | }
|
|---|
| 492 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 493 | //
|
|---|
| 494 | G4double G4AdjointhIonisationModel::GetSecondAdjEnergyMaxForProdToProjCase(G4double )
|
|---|
| 495 | { return HighEnergyLimit;
|
|---|
| 496 | }
|
|---|
| 497 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 498 | //
|
|---|
| 499 | G4double G4AdjointhIonisationModel::GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
|
|---|
| 500 | { G4double Tmin= (2*PrimAdjEnergy-4*mass + std::sqrt(4.*PrimAdjEnergy*PrimAdjEnergy +16.*mass*mass + 8.*PrimAdjEnergy*mass*(1/ratio +ratio)))/4.;
|
|---|
| 501 | return Tmin;
|
|---|
| 502 | }
|
|---|