| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4VEmAdjointModel.cc,v 1.5 2009/12/16 17:50:09 gunter Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 28 | //
|
|---|
| 29 | #include "G4VEmAdjointModel.hh"
|
|---|
| 30 | #include "G4AdjointCSManager.hh"
|
|---|
| 31 | #include "G4Integrator.hh"
|
|---|
| 32 | #include "G4TrackStatus.hh"
|
|---|
| 33 | #include "G4ParticleChange.hh"
|
|---|
| 34 | #include "G4AdjointElectron.hh"
|
|---|
| 35 | #include "G4AdjointInterpolator.hh"
|
|---|
| 36 | #include "G4PhysicsTable.hh"
|
|---|
| 37 |
|
|---|
| 38 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 39 | //
|
|---|
| 40 | G4VEmAdjointModel::G4VEmAdjointModel(const G4String& nam):
|
|---|
| 41 | name(nam)
|
|---|
| 42 | // lowLimit(0.1*keV), highLimit(100.0*TeV), fluc(0), name(nam), pParticleChange(0)
|
|---|
| 43 | {
|
|---|
| 44 | G4AdjointCSManager::GetAdjointCSManager()->RegisterEmAdjointModel(this);
|
|---|
| 45 | second_part_of_same_type =false;
|
|---|
| 46 | theDirectEMModel=0;
|
|---|
| 47 | }
|
|---|
| 48 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 49 | //
|
|---|
| 50 | G4VEmAdjointModel::~G4VEmAdjointModel()
|
|---|
| 51 | {;}
|
|---|
| 52 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 53 | //
|
|---|
| 54 | G4double G4VEmAdjointModel::AdjointCrossSection(const G4MaterialCutsCouple* aCouple,
|
|---|
| 55 | G4double primEnergy,
|
|---|
| 56 | G4bool IsScatProjToProjCase)
|
|---|
| 57 | {
|
|---|
| 58 | DefineCurrentMaterial(aCouple);
|
|---|
| 59 | preStepEnergy=primEnergy;
|
|---|
| 60 |
|
|---|
| 61 | std::vector<G4double>* CS_Vs_Element = &CS_Vs_ElementForProdToProjCase;
|
|---|
| 62 | if (IsScatProjToProjCase) CS_Vs_Element = &CS_Vs_ElementForScatProjToProjCase;
|
|---|
| 63 | lastCS = G4AdjointCSManager::GetAdjointCSManager()->ComputeAdjointCS(currentMaterial,
|
|---|
| 64 | this,
|
|---|
| 65 | primEnergy,
|
|---|
| 66 | currentTcutForDirectSecond,
|
|---|
| 67 | IsScatProjToProjCase,
|
|---|
| 68 | *CS_Vs_Element);
|
|---|
| 69 | if (IsScatProjToProjCase) lastAdjointCSForScatProjToProjCase = lastCS;
|
|---|
| 70 | else lastAdjointCSForProdToProjCase =lastCS;
|
|---|
| 71 |
|
|---|
| 72 |
|
|---|
| 73 |
|
|---|
| 74 | return lastCS;
|
|---|
| 75 |
|
|---|
| 76 | }
|
|---|
| 77 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 78 | //
|
|---|
| 79 | //General implementation correct for energy loss process, for the photoelectric and compton scattering the method should be redefine
|
|---|
| 80 | G4double G4VEmAdjointModel::DiffCrossSectionPerAtomPrimToSecond(
|
|---|
| 81 | G4double kinEnergyProj,
|
|---|
| 82 | G4double kinEnergyProd,
|
|---|
| 83 | G4double Z,
|
|---|
| 84 | G4double A)
|
|---|
| 85 | {
|
|---|
| 86 | G4double dSigmadEprod=0;
|
|---|
| 87 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 88 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 | if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
|
|---|
| 92 | G4double Tmax=kinEnergyProj;
|
|---|
| 93 | if (second_part_of_same_type) Tmax = kinEnergyProj/2.;
|
|---|
| 94 |
|
|---|
| 95 | G4double E1=kinEnergyProd;
|
|---|
| 96 | G4double E2=kinEnergyProd*1.000001;
|
|---|
| 97 | G4double dE=(E2-E1);
|
|---|
| 98 | G4double sigma1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
|
|---|
| 99 | G4double sigma2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
|
|---|
| 100 |
|
|---|
| 101 | dSigmadEprod=(sigma1-sigma2)/dE;
|
|---|
| 102 | }
|
|---|
| 103 | return dSigmadEprod;
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 |
|
|---|
| 107 | }
|
|---|
| 108 | //The implementation here is correct for energy loss process, for the photoelectric and compton scattering the method should be redefine
|
|---|
| 109 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 110 | //
|
|---|
| 111 | G4double G4VEmAdjointModel::DiffCrossSectionPerAtomPrimToScatPrim(
|
|---|
| 112 | G4double kinEnergyProj,
|
|---|
| 113 | G4double kinEnergyScatProj,
|
|---|
| 114 | G4double Z,
|
|---|
| 115 | G4double A)
|
|---|
| 116 | { G4double kinEnergyProd = kinEnergyProj - kinEnergyScatProj;
|
|---|
| 117 | G4double dSigmadEprod;
|
|---|
| 118 | if (kinEnergyProd <=0) dSigmadEprod=0;
|
|---|
| 119 | else dSigmadEprod=DiffCrossSectionPerAtomPrimToSecond(kinEnergyProj,kinEnergyProd,Z,A);
|
|---|
| 120 | return dSigmadEprod;
|
|---|
| 121 |
|
|---|
| 122 | }
|
|---|
| 123 |
|
|---|
| 124 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 125 | //
|
|---|
| 126 | //The implementation here is correct for energy loss process, for the photoelectric and compton scattering the method should be redefine
|
|---|
| 127 | G4double G4VEmAdjointModel::DiffCrossSectionPerVolumePrimToSecond(
|
|---|
| 128 | const G4Material* aMaterial,
|
|---|
| 129 | G4double kinEnergyProj,
|
|---|
| 130 | G4double kinEnergyProd)
|
|---|
| 131 | {
|
|---|
| 132 | G4double dSigmadEprod=0;
|
|---|
| 133 | G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 134 | G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 | if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){
|
|---|
| 138 | G4double Tmax=kinEnergyProj;
|
|---|
| 139 | if (second_part_of_same_type) Tmax = kinEnergyProj/2.;
|
|---|
| 140 | G4double E1=kinEnergyProd;
|
|---|
| 141 | G4double E2=kinEnergyProd*1.0001;
|
|---|
| 142 | G4double dE=(E2-E1);
|
|---|
| 143 | G4double sigma1=theDirectEMModel->CrossSectionPerVolume(aMaterial,theDirectPrimaryPartDef,kinEnergyProj,E1,E2);
|
|---|
| 144 | G4double sigma2=theDirectEMModel->CrossSectionPerVolume(aMaterial,theDirectPrimaryPartDef,kinEnergyProj,E2,1.e50);
|
|---|
| 145 | dSigmadEprod=(sigma1-sigma2)/dE;
|
|---|
| 146 | }
|
|---|
| 147 | return dSigmadEprod;
|
|---|
| 148 |
|
|---|
| 149 |
|
|---|
| 150 |
|
|---|
| 151 | }
|
|---|
| 152 | //The implementation here is correct for energy loss process, for the photoelectric and compton scattering the method should be redefine
|
|---|
| 153 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 154 | //
|
|---|
| 155 | G4double G4VEmAdjointModel::DiffCrossSectionPerVolumePrimToScatPrim(
|
|---|
| 156 | const G4Material* aMaterial,
|
|---|
| 157 | G4double kinEnergyProj,
|
|---|
| 158 | G4double kinEnergyScatProj)
|
|---|
| 159 | { G4double kinEnergyProd = kinEnergyProj - kinEnergyScatProj;
|
|---|
| 160 | G4double dSigmadEprod;
|
|---|
| 161 | if (kinEnergyProd <=0) dSigmadEprod=0;
|
|---|
| 162 | else dSigmadEprod=DiffCrossSectionPerVolumePrimToSecond(aMaterial,kinEnergyProj,kinEnergyProd);
|
|---|
| 163 | return dSigmadEprod;
|
|---|
| 164 |
|
|---|
| 165 | }
|
|---|
| 166 | ///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 167 | //
|
|---|
| 168 | G4double G4VEmAdjointModel::DiffCrossSectionFunction1(G4double kinEnergyProj){
|
|---|
| 169 |
|
|---|
| 170 |
|
|---|
| 171 | G4double bias_factor = CS_biasing_factor*kinEnergyProdForIntegration/kinEnergyProj;
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 | if (UseMatrixPerElement ) {
|
|---|
| 175 | return DiffCrossSectionPerAtomPrimToSecond(kinEnergyProj,kinEnergyProdForIntegration,ZSelectedNucleus,ASelectedNucleus)*bias_factor;
|
|---|
| 176 | }
|
|---|
| 177 | else {
|
|---|
| 178 | return DiffCrossSectionPerVolumePrimToSecond(SelectedMaterial,kinEnergyProj,kinEnergyProdForIntegration)*bias_factor;
|
|---|
| 179 | }
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 183 | //
|
|---|
| 184 | G4double G4VEmAdjointModel::DiffCrossSectionFunction2(G4double kinEnergyProj){
|
|---|
| 185 |
|
|---|
| 186 | G4double bias_factor = CS_biasing_factor*kinEnergyScatProjForIntegration/kinEnergyProj;
|
|---|
| 187 | if (UseMatrixPerElement ) {
|
|---|
| 188 | return DiffCrossSectionPerAtomPrimToScatPrim(kinEnergyProj,kinEnergyScatProjForIntegration,ZSelectedNucleus,ASelectedNucleus)*bias_factor;
|
|---|
| 189 | }
|
|---|
| 190 | else {
|
|---|
| 191 | return DiffCrossSectionPerVolumePrimToScatPrim(SelectedMaterial,kinEnergyProj,kinEnergyScatProjForIntegration)*bias_factor;
|
|---|
| 192 |
|
|---|
| 193 | }
|
|---|
| 194 |
|
|---|
| 195 | }
|
|---|
| 196 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 197 | //
|
|---|
| 198 |
|
|---|
| 199 | G4double G4VEmAdjointModel::DiffCrossSectionPerVolumeFunctionForIntegrationOverEkinProj(G4double kinEnergyProd)
|
|---|
| 200 | {
|
|---|
| 201 | return DiffCrossSectionPerVolumePrimToSecond(SelectedMaterial,kinEnergyProjForIntegration,kinEnergyProd);
|
|---|
| 202 | }
|
|---|
| 203 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 204 | //
|
|---|
| 205 | std::vector< std::vector<G4double>* > G4VEmAdjointModel::ComputeAdjointCrossSectionVectorPerAtomForSecond(
|
|---|
| 206 | G4double kinEnergyProd,
|
|---|
| 207 | G4double Z,
|
|---|
| 208 | G4double A ,
|
|---|
| 209 | G4int nbin_pro_decade) //nb bins pro order of magnitude of energy
|
|---|
| 210 | {
|
|---|
| 211 | G4Integrator<G4VEmAdjointModel, double(G4VEmAdjointModel::*)(double)> integral;
|
|---|
| 212 | ASelectedNucleus= int(A);
|
|---|
| 213 | ZSelectedNucleus=int(Z);
|
|---|
| 214 | kinEnergyProdForIntegration = kinEnergyProd;
|
|---|
| 215 |
|
|---|
| 216 | //compute the vector of integrated cross sections
|
|---|
| 217 | //-------------------
|
|---|
| 218 |
|
|---|
| 219 | G4double minEProj= GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 220 | G4double maxEProj= GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 221 | G4double E1=minEProj;
|
|---|
| 222 | std::vector< double>* log_ESec_vector = new std::vector< double>();
|
|---|
| 223 | std::vector< double>* log_Prob_vector = new std::vector< double>();
|
|---|
| 224 | log_ESec_vector->clear();
|
|---|
| 225 | log_Prob_vector->clear();
|
|---|
| 226 | log_ESec_vector->push_back(std::log(E1));
|
|---|
| 227 | log_Prob_vector->push_back(-50.);
|
|---|
| 228 |
|
|---|
| 229 | G4double E2=std::pow(10.,double( int(std::log10(minEProj)*nbin_pro_decade)+1)/nbin_pro_decade);
|
|---|
| 230 | G4double fE=std::pow(10.,1./nbin_pro_decade);
|
|---|
| 231 | G4double int_cross_section=0.;
|
|---|
| 232 |
|
|---|
| 233 | if (std::pow(fE,5.)>(maxEProj/minEProj)) fE = std::pow(maxEProj/minEProj,0.2);
|
|---|
| 234 |
|
|---|
| 235 | while (E1 <maxEProj*0.9999999){
|
|---|
| 236 | //G4cout<<E1<<'\t'<<E2<<G4endl;
|
|---|
| 237 |
|
|---|
| 238 | int_cross_section +=integral.Simpson(this,
|
|---|
| 239 | &G4VEmAdjointModel::DiffCrossSectionFunction1,E1,std::min(E2,maxEProj*0.99999999), 5);
|
|---|
| 240 | log_ESec_vector->push_back(std::log(std::min(E2,maxEProj)));
|
|---|
| 241 | log_Prob_vector->push_back(std::log(int_cross_section));
|
|---|
| 242 | E1=E2;
|
|---|
| 243 | E2*=fE;
|
|---|
| 244 |
|
|---|
| 245 | }
|
|---|
| 246 | std::vector< std::vector<G4double>* > res_mat;
|
|---|
| 247 | res_mat.clear();
|
|---|
| 248 | if (int_cross_section >0.) {
|
|---|
| 249 | res_mat.push_back(log_ESec_vector);
|
|---|
| 250 | res_mat.push_back(log_Prob_vector);
|
|---|
| 251 | }
|
|---|
| 252 |
|
|---|
| 253 | return res_mat;
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 | /////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 257 | //
|
|---|
| 258 | std::vector< std::vector<G4double>* > G4VEmAdjointModel::ComputeAdjointCrossSectionVectorPerAtomForScatProj(
|
|---|
| 259 | G4double kinEnergyScatProj,
|
|---|
| 260 | G4double Z,
|
|---|
| 261 | G4double A ,
|
|---|
| 262 | G4int nbin_pro_decade) //nb bins pro order of magnitude of energy
|
|---|
| 263 | { G4Integrator<G4VEmAdjointModel, double(G4VEmAdjointModel::*)(double)> integral;
|
|---|
| 264 | ASelectedNucleus=int(A);
|
|---|
| 265 | ZSelectedNucleus=int(Z);
|
|---|
| 266 | kinEnergyScatProjForIntegration = kinEnergyScatProj;
|
|---|
| 267 |
|
|---|
| 268 | //compute the vector of integrated cross sections
|
|---|
| 269 | //-------------------
|
|---|
| 270 |
|
|---|
| 271 | G4double minEProj= GetSecondAdjEnergyMinForScatProjToProjCase(kinEnergyScatProj);
|
|---|
| 272 | G4double maxEProj= GetSecondAdjEnergyMaxForScatProjToProjCase(kinEnergyScatProj);
|
|---|
| 273 | G4double dEmax=maxEProj-kinEnergyScatProj;
|
|---|
| 274 | G4double dEmin=GetLowEnergyLimit();
|
|---|
| 275 | G4double dE1=dEmin;
|
|---|
| 276 | G4double dE2=dEmin;
|
|---|
| 277 |
|
|---|
| 278 |
|
|---|
| 279 | std::vector< double>* log_ESec_vector = new std::vector< double>();
|
|---|
| 280 | std::vector< double>* log_Prob_vector = new std::vector< double>();
|
|---|
| 281 | log_ESec_vector->push_back(std::log(dEmin));
|
|---|
| 282 | log_Prob_vector->push_back(-50.);
|
|---|
| 283 | G4int nbins=std::max( int(std::log10(dEmax/dEmin))*nbin_pro_decade,5);
|
|---|
| 284 | G4double fE=std::pow(dEmax/dEmin,1./nbins);
|
|---|
| 285 |
|
|---|
| 286 |
|
|---|
| 287 |
|
|---|
| 288 |
|
|---|
| 289 |
|
|---|
| 290 | G4double int_cross_section=0.;
|
|---|
| 291 |
|
|---|
| 292 | while (dE1 <dEmax*0.9999999999999){
|
|---|
| 293 | dE2=dE1*fE;
|
|---|
| 294 | int_cross_section +=integral.Simpson(this,
|
|---|
| 295 | &G4VEmAdjointModel::DiffCrossSectionFunction2,minEProj+dE1,std::min(minEProj+dE2,maxEProj), 5);
|
|---|
| 296 | //G4cout<<"int_cross_section "<<minEProj+dE1<<'\t'<<int_cross_section<<G4endl;
|
|---|
| 297 | log_ESec_vector->push_back(std::log(std::min(dE2,maxEProj-minEProj)));
|
|---|
| 298 | log_Prob_vector->push_back(std::log(int_cross_section));
|
|---|
| 299 | dE1=dE2;
|
|---|
| 300 |
|
|---|
| 301 | }
|
|---|
| 302 |
|
|---|
| 303 |
|
|---|
| 304 | std::vector< std::vector<G4double> *> res_mat;
|
|---|
| 305 | res_mat.clear();
|
|---|
| 306 | if (int_cross_section >0.) {
|
|---|
| 307 | res_mat.push_back(log_ESec_vector);
|
|---|
| 308 | res_mat.push_back(log_Prob_vector);
|
|---|
| 309 | }
|
|---|
| 310 |
|
|---|
| 311 | return res_mat;
|
|---|
| 312 | }
|
|---|
| 313 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 314 | //
|
|---|
| 315 | std::vector< std::vector<G4double>* > G4VEmAdjointModel::ComputeAdjointCrossSectionVectorPerVolumeForSecond(
|
|---|
| 316 | G4Material* aMaterial,
|
|---|
| 317 | G4double kinEnergyProd,
|
|---|
| 318 | G4int nbin_pro_decade) //nb bins pro order of magnitude of energy
|
|---|
| 319 | { G4Integrator<G4VEmAdjointModel, double(G4VEmAdjointModel::*)(double)> integral;
|
|---|
| 320 | SelectedMaterial= aMaterial;
|
|---|
| 321 | kinEnergyProdForIntegration = kinEnergyProd;
|
|---|
| 322 | //compute the vector of integrated cross sections
|
|---|
| 323 | //-------------------
|
|---|
| 324 |
|
|---|
| 325 | G4double minEProj= GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
|
|---|
| 326 | G4double maxEProj= GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
|
|---|
| 327 | G4double E1=minEProj;
|
|---|
| 328 | std::vector< double>* log_ESec_vector = new std::vector< double>();
|
|---|
| 329 | std::vector< double>* log_Prob_vector = new std::vector< double>();
|
|---|
| 330 | log_ESec_vector->clear();
|
|---|
| 331 | log_Prob_vector->clear();
|
|---|
| 332 | log_ESec_vector->push_back(std::log(E1));
|
|---|
| 333 | log_Prob_vector->push_back(-50.);
|
|---|
| 334 |
|
|---|
| 335 | G4double E2=std::pow(10.,double( int(std::log10(minEProj)*nbin_pro_decade)+1)/nbin_pro_decade);
|
|---|
| 336 | G4double fE=std::pow(10.,1./nbin_pro_decade);
|
|---|
| 337 | G4double int_cross_section=0.;
|
|---|
| 338 |
|
|---|
| 339 | if (std::pow(fE,5.)>(maxEProj/minEProj)) fE = std::pow(maxEProj/minEProj,0.2);
|
|---|
| 340 |
|
|---|
| 341 | while (E1 <maxEProj*0.9999999){
|
|---|
| 342 |
|
|---|
| 343 | int_cross_section +=integral.Simpson(this,
|
|---|
| 344 | &G4VEmAdjointModel::DiffCrossSectionFunction1,E1,std::min(E2,maxEProj*0.99999999), 5);
|
|---|
| 345 | log_ESec_vector->push_back(std::log(std::min(E2,maxEProj)));
|
|---|
| 346 | log_Prob_vector->push_back(std::log(int_cross_section));
|
|---|
| 347 | E1=E2;
|
|---|
| 348 | E2*=fE;
|
|---|
| 349 |
|
|---|
| 350 | }
|
|---|
| 351 | std::vector< std::vector<G4double>* > res_mat;
|
|---|
| 352 | res_mat.clear();
|
|---|
| 353 |
|
|---|
| 354 | if (int_cross_section >0.) {
|
|---|
| 355 | res_mat.push_back(log_ESec_vector);
|
|---|
| 356 | res_mat.push_back(log_Prob_vector);
|
|---|
| 357 | }
|
|---|
| 358 |
|
|---|
| 359 |
|
|---|
| 360 |
|
|---|
| 361 | return res_mat;
|
|---|
| 362 | }
|
|---|
| 363 |
|
|---|
| 364 | /////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 365 | //
|
|---|
| 366 | std::vector< std::vector<G4double>* > G4VEmAdjointModel::ComputeAdjointCrossSectionVectorPerVolumeForScatProj(
|
|---|
| 367 | G4Material* aMaterial,
|
|---|
| 368 | G4double kinEnergyScatProj,
|
|---|
| 369 | G4int nbin_pro_decade) //nb bins pro order of magnitude of energy
|
|---|
| 370 | { G4Integrator<G4VEmAdjointModel, double(G4VEmAdjointModel::*)(double)> integral;
|
|---|
| 371 | SelectedMaterial= aMaterial;
|
|---|
| 372 | kinEnergyScatProjForIntegration = kinEnergyScatProj;
|
|---|
| 373 |
|
|---|
| 374 | //compute the vector of integrated cross sections
|
|---|
| 375 | //-------------------
|
|---|
| 376 |
|
|---|
| 377 | G4double minEProj= GetSecondAdjEnergyMinForScatProjToProjCase(kinEnergyScatProj);
|
|---|
| 378 | G4double maxEProj= GetSecondAdjEnergyMaxForScatProjToProjCase(kinEnergyScatProj);
|
|---|
| 379 |
|
|---|
| 380 |
|
|---|
| 381 | G4double dEmax=maxEProj-kinEnergyScatProj;
|
|---|
| 382 | G4double dEmin=GetLowEnergyLimit();
|
|---|
| 383 | G4double dE1=dEmin;
|
|---|
| 384 | G4double dE2=dEmin;
|
|---|
| 385 |
|
|---|
| 386 |
|
|---|
| 387 | std::vector< double>* log_ESec_vector = new std::vector< double>();
|
|---|
| 388 | std::vector< double>* log_Prob_vector = new std::vector< double>();
|
|---|
| 389 | log_ESec_vector->push_back(std::log(dEmin));
|
|---|
| 390 | log_Prob_vector->push_back(-50.);
|
|---|
| 391 | G4int nbins=std::max( int(std::log10(dEmax/dEmin))*nbin_pro_decade,5);
|
|---|
| 392 | G4double fE=std::pow(dEmax/dEmin,1./nbins);
|
|---|
| 393 |
|
|---|
| 394 | G4double int_cross_section=0.;
|
|---|
| 395 |
|
|---|
| 396 | while (dE1 <dEmax*0.9999999999999){
|
|---|
| 397 | dE2=dE1*fE;
|
|---|
| 398 | int_cross_section +=integral.Simpson(this,
|
|---|
| 399 | &G4VEmAdjointModel::DiffCrossSectionFunction2,minEProj+dE1,std::min(minEProj+dE2,maxEProj), 5);
|
|---|
| 400 | log_ESec_vector->push_back(std::log(std::min(dE2,maxEProj-minEProj)));
|
|---|
| 401 | log_Prob_vector->push_back(std::log(int_cross_section));
|
|---|
| 402 | dE1=dE2;
|
|---|
| 403 |
|
|---|
| 404 | }
|
|---|
| 405 |
|
|---|
| 406 |
|
|---|
| 407 |
|
|---|
| 408 |
|
|---|
| 409 |
|
|---|
| 410 | std::vector< std::vector<G4double> *> res_mat;
|
|---|
| 411 | res_mat.clear();
|
|---|
| 412 | if (int_cross_section >0.) {
|
|---|
| 413 | res_mat.push_back(log_ESec_vector);
|
|---|
| 414 | res_mat.push_back(log_Prob_vector);
|
|---|
| 415 | }
|
|---|
| 416 |
|
|---|
| 417 | return res_mat;
|
|---|
| 418 | }
|
|---|
| 419 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 420 | //
|
|---|
| 421 | G4double G4VEmAdjointModel::SampleAdjSecEnergyFromCSMatrix(size_t MatrixIndex,G4double aPrimEnergy,G4bool IsScatProjToProjCase)
|
|---|
| 422 | {
|
|---|
| 423 |
|
|---|
| 424 |
|
|---|
| 425 | G4AdjointCSMatrix* theMatrix= (*pOnCSMatrixForProdToProjBackwardScattering)[MatrixIndex];
|
|---|
| 426 | if (IsScatProjToProjCase) theMatrix= (*pOnCSMatrixForScatProjToProjBackwardScattering)[MatrixIndex];
|
|---|
| 427 | std::vector< double>* theLogPrimEnergyVector = theMatrix->GetLogPrimEnergyVector();
|
|---|
| 428 |
|
|---|
| 429 | if (theLogPrimEnergyVector->size() ==0){
|
|---|
| 430 | G4cout<<"No data are contained in the given AdjointCSMatrix!"<<G4endl;
|
|---|
| 431 | G4cout<<"The sampling procedure will be stopped."<<G4endl;
|
|---|
| 432 | return 0.;
|
|---|
| 433 |
|
|---|
| 434 | }
|
|---|
| 435 |
|
|---|
| 436 | G4AdjointInterpolator* theInterpolator=G4AdjointInterpolator::GetInstance();
|
|---|
| 437 | G4double aLogPrimEnergy = std::log(aPrimEnergy);
|
|---|
| 438 | size_t ind =theInterpolator->FindPositionForLogVector(aLogPrimEnergy,*theLogPrimEnergyVector);
|
|---|
| 439 |
|
|---|
| 440 |
|
|---|
| 441 | G4double aLogPrimEnergy1,aLogPrimEnergy2;
|
|---|
| 442 | G4double aLogCS1,aLogCS2;
|
|---|
| 443 | G4double log01,log02;
|
|---|
| 444 | std::vector< double>* aLogSecondEnergyVector1 =0;
|
|---|
| 445 | std::vector< double>* aLogSecondEnergyVector2 =0;
|
|---|
| 446 | std::vector< double>* aLogProbVector1=0;
|
|---|
| 447 | std::vector< double>* aLogProbVector2=0;
|
|---|
| 448 | std::vector< size_t>* aLogProbVectorIndex1=0;
|
|---|
| 449 | std::vector< size_t>* aLogProbVectorIndex2=0;
|
|---|
| 450 |
|
|---|
| 451 | theMatrix->GetData(ind, aLogPrimEnergy1,aLogCS1,log01, aLogSecondEnergyVector1,aLogProbVector1,aLogProbVectorIndex1);
|
|---|
| 452 | theMatrix->GetData(ind+1, aLogPrimEnergy2,aLogCS2,log02, aLogSecondEnergyVector2,aLogProbVector2,aLogProbVectorIndex2);
|
|---|
| 453 |
|
|---|
| 454 | G4double rand_var = G4UniformRand();
|
|---|
| 455 | G4double log_rand_var= std::log(rand_var);
|
|---|
| 456 | G4double log_Tcut =std::log(currentTcutForDirectSecond);
|
|---|
| 457 | G4double Esec=0;
|
|---|
| 458 | G4double log_dE1,log_dE2;
|
|---|
| 459 | G4double log_rand_var1,log_rand_var2;
|
|---|
| 460 | G4double log_E1,log_E2;
|
|---|
| 461 | log_rand_var1=log_rand_var;
|
|---|
| 462 | log_rand_var2=log_rand_var;
|
|---|
| 463 |
|
|---|
| 464 | G4double Emin=0.;
|
|---|
| 465 | G4double Emax=0.;
|
|---|
| 466 | if (theMatrix->IsScatProjToProjCase()){ //case where Tcut plays a role
|
|---|
| 467 | Emin=GetSecondAdjEnergyMinForScatProjToProjCase(aPrimEnergy,currentTcutForDirectSecond);
|
|---|
| 468 | Emax=GetSecondAdjEnergyMaxForScatProjToProjCase(aPrimEnergy);
|
|---|
| 469 | G4double dE=0;
|
|---|
| 470 | if (Emin < Emax ){
|
|---|
| 471 | if (ApplyCutInRange) {
|
|---|
| 472 | if (second_part_of_same_type && currentTcutForDirectSecond>aPrimEnergy) return aPrimEnergy;
|
|---|
| 473 |
|
|---|
| 474 | log_rand_var1=log_rand_var+theInterpolator->InterpolateForLogVector(log_Tcut,*aLogSecondEnergyVector1,*aLogProbVector1);
|
|---|
| 475 | log_rand_var2=log_rand_var+theInterpolator->InterpolateForLogVector(log_Tcut,*aLogSecondEnergyVector2,*aLogProbVector2);
|
|---|
| 476 |
|
|---|
| 477 | }
|
|---|
| 478 | log_dE1 = theInterpolator->Interpolate(log_rand_var1,*aLogProbVector1,*aLogSecondEnergyVector1,"Lin");
|
|---|
| 479 | log_dE2 = theInterpolator->Interpolate(log_rand_var2,*aLogProbVector2,*aLogSecondEnergyVector2,"Lin");
|
|---|
| 480 | dE=std::exp(theInterpolator->LinearInterpolation(aLogPrimEnergy,aLogPrimEnergy1,aLogPrimEnergy2,log_dE1,log_dE2));
|
|---|
| 481 | }
|
|---|
| 482 |
|
|---|
| 483 | Esec = aPrimEnergy +dE;
|
|---|
| 484 | Esec=std::max(Esec,Emin);
|
|---|
| 485 | Esec=std::min(Esec,Emax);
|
|---|
| 486 |
|
|---|
| 487 | }
|
|---|
| 488 | else { //Tcut condition is already full-filled
|
|---|
| 489 |
|
|---|
| 490 | log_E1 = theInterpolator->Interpolate(log_rand_var,*aLogProbVector1,*aLogSecondEnergyVector1,"Lin");
|
|---|
| 491 | log_E2 = theInterpolator->Interpolate(log_rand_var,*aLogProbVector2,*aLogSecondEnergyVector2,"Lin");
|
|---|
| 492 |
|
|---|
| 493 | Esec = std::exp(theInterpolator->LinearInterpolation(aLogPrimEnergy,aLogPrimEnergy1,aLogPrimEnergy2,log_E1,log_E2));
|
|---|
| 494 | Emin=GetSecondAdjEnergyMinForProdToProjCase(aPrimEnergy);
|
|---|
| 495 | Emax=GetSecondAdjEnergyMaxForProdToProjCase(aPrimEnergy);
|
|---|
| 496 | Esec=std::max(Esec,Emin);
|
|---|
| 497 | Esec=std::min(Esec,Emax);
|
|---|
| 498 |
|
|---|
| 499 | }
|
|---|
| 500 |
|
|---|
| 501 | return Esec;
|
|---|
| 502 |
|
|---|
| 503 |
|
|---|
| 504 |
|
|---|
| 505 |
|
|---|
| 506 |
|
|---|
| 507 | }
|
|---|
| 508 |
|
|---|
| 509 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 510 | //
|
|---|
| 511 | G4double G4VEmAdjointModel::SampleAdjSecEnergyFromCSMatrix(G4double aPrimEnergy,G4bool IsScatProjToProjCase)
|
|---|
| 512 | { SelectCSMatrix(IsScatProjToProjCase);
|
|---|
| 513 | return SampleAdjSecEnergyFromCSMatrix(indexOfUsedCrossSectionMatrix, aPrimEnergy, IsScatProjToProjCase);
|
|---|
| 514 | }
|
|---|
| 515 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 516 | //
|
|---|
| 517 | void G4VEmAdjointModel::SelectCSMatrix(G4bool IsScatProjToProjCase)
|
|---|
| 518 | {
|
|---|
| 519 | indexOfUsedCrossSectionMatrix=0;
|
|---|
| 520 | if (!UseMatrixPerElement) indexOfUsedCrossSectionMatrix = currentMaterialIndex;
|
|---|
| 521 | else if (!UseOnlyOneMatrixForAllElements) { //Select Material
|
|---|
| 522 | std::vector<G4double>* CS_Vs_Element = &CS_Vs_ElementForScatProjToProjCase;
|
|---|
| 523 | lastCS=lastAdjointCSForScatProjToProjCase;
|
|---|
| 524 | if ( !IsScatProjToProjCase) {
|
|---|
| 525 | CS_Vs_Element = &CS_Vs_ElementForProdToProjCase;
|
|---|
| 526 | lastCS=lastAdjointCSForProdToProjCase;
|
|---|
| 527 | }
|
|---|
| 528 | G4double rand_var= G4UniformRand();
|
|---|
| 529 | G4double SumCS=0.;
|
|---|
| 530 | size_t ind=0;
|
|---|
| 531 | for (size_t i=0;i<CS_Vs_Element->size();i++){
|
|---|
| 532 | SumCS+=(*CS_Vs_Element)[i];
|
|---|
| 533 | if (rand_var<=SumCS/lastCS){
|
|---|
| 534 | ind=i;
|
|---|
| 535 | break;
|
|---|
| 536 | }
|
|---|
| 537 | }
|
|---|
| 538 | indexOfUsedCrossSectionMatrix = currentMaterial->GetElement(ind)->GetIndex();
|
|---|
| 539 | }
|
|---|
| 540 | }
|
|---|
| 541 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 542 | //
|
|---|
| 543 | G4double G4VEmAdjointModel::SampleAdjSecEnergyFromDiffCrossSectionPerAtom(G4double prim_energy,G4bool IsScatProjToProjCase)
|
|---|
| 544 | {
|
|---|
| 545 | // here we try to use the rejection method
|
|---|
| 546 | //-----------------------------------------
|
|---|
| 547 |
|
|---|
| 548 | G4double E=0;
|
|---|
| 549 | G4double x,xmin,greject,q;
|
|---|
| 550 | if ( IsScatProjToProjCase){
|
|---|
| 551 | G4double Emax = GetSecondAdjEnergyMaxForScatProjToProjCase(prim_energy);
|
|---|
| 552 | G4double Emin= prim_energy+currentTcutForDirectSecond;
|
|---|
| 553 | xmin=Emin/Emax;
|
|---|
| 554 | G4double grejmax = DiffCrossSectionPerAtomPrimToScatPrim(Emin,prim_energy,1)*prim_energy;
|
|---|
| 555 |
|
|---|
| 556 | do {
|
|---|
| 557 | q = G4UniformRand();
|
|---|
| 558 | x = 1./(q*(1./xmin -1.) +1.);
|
|---|
| 559 | E=x*Emax;
|
|---|
| 560 | greject = DiffCrossSectionPerAtomPrimToScatPrim( E,prim_energy ,1)*prim_energy;
|
|---|
| 561 |
|
|---|
| 562 | }
|
|---|
| 563 |
|
|---|
| 564 | while( greject < G4UniformRand()*grejmax );
|
|---|
| 565 |
|
|---|
| 566 | }
|
|---|
| 567 | else {
|
|---|
| 568 | G4double Emax = GetSecondAdjEnergyMaxForProdToProjCase(prim_energy);
|
|---|
| 569 | G4double Emin= GetSecondAdjEnergyMinForProdToProjCase(prim_energy);;
|
|---|
| 570 | xmin=Emin/Emax;
|
|---|
| 571 | G4double grejmax = DiffCrossSectionPerAtomPrimToSecond(Emin,prim_energy,1);
|
|---|
| 572 | do {
|
|---|
| 573 | q = G4UniformRand();
|
|---|
| 574 | x = std::pow(xmin, q);
|
|---|
| 575 | E=x*Emax;
|
|---|
| 576 | greject = DiffCrossSectionPerAtomPrimToSecond( E,prim_energy ,1);
|
|---|
| 577 |
|
|---|
| 578 | }
|
|---|
| 579 |
|
|---|
| 580 | while( greject < G4UniformRand()*grejmax );
|
|---|
| 581 |
|
|---|
| 582 |
|
|---|
| 583 |
|
|---|
| 584 | }
|
|---|
| 585 |
|
|---|
| 586 | return E;
|
|---|
| 587 | }
|
|---|
| 588 |
|
|---|
| 589 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 590 | //
|
|---|
| 591 | void G4VEmAdjointModel::CorrectPostStepWeight(G4ParticleChange* fParticleChange,
|
|---|
| 592 | G4double old_weight,
|
|---|
| 593 | G4double adjointPrimKinEnergy,
|
|---|
| 594 | G4double projectileKinEnergy,
|
|---|
| 595 | G4bool IsScatProjToProjCase)
|
|---|
| 596 | {
|
|---|
| 597 | G4double new_weight=old_weight;
|
|---|
| 598 | G4double w_corr =1./CS_biasing_factor;
|
|---|
| 599 | w_corr*=G4AdjointCSManager::GetAdjointCSManager()->GetPostStepWeightCorrection();
|
|---|
| 600 |
|
|---|
| 601 |
|
|---|
| 602 | lastCS=lastAdjointCSForScatProjToProjCase;
|
|---|
| 603 | if ( !IsScatProjToProjCase) lastCS=lastAdjointCSForProdToProjCase;
|
|---|
| 604 | if (adjointPrimKinEnergy !=preStepEnergy){ //Is that in all cases needed???
|
|---|
| 605 | G4double post_stepCS=AdjointCrossSection(currentCouple, adjointPrimKinEnergy
|
|---|
| 606 | ,IsScatProjToProjCase );
|
|---|
| 607 | w_corr*=post_stepCS/lastCS;
|
|---|
| 608 | }
|
|---|
| 609 |
|
|---|
| 610 | new_weight*=w_corr;
|
|---|
| 611 |
|
|---|
| 612 | //G4cout<<"Post step "<<new_weight<<'\t'<<w_corr<<'\t'<<old_weight<<G4endl;
|
|---|
| 613 | new_weight*=projectileKinEnergy/adjointPrimKinEnergy;//This is needed due to the biasing of diff CS
|
|---|
| 614 | //by the factor adjointPrimKinEnergy/projectileKinEnergy
|
|---|
| 615 |
|
|---|
| 616 |
|
|---|
| 617 |
|
|---|
| 618 | fParticleChange->SetParentWeightByProcess(false);
|
|---|
| 619 | fParticleChange->SetSecondaryWeightByProcess(false);
|
|---|
| 620 | fParticleChange->ProposeParentWeight(new_weight);
|
|---|
| 621 | }
|
|---|
| 622 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 623 | //
|
|---|
| 624 | G4double G4VEmAdjointModel::GetSecondAdjEnergyMaxForScatProjToProjCase(G4double kinEnergyScatProj)
|
|---|
| 625 | { G4double maxEProj= HighEnergyLimit;
|
|---|
| 626 | if (second_part_of_same_type) maxEProj=std::min(kinEnergyScatProj*2.,HighEnergyLimit);
|
|---|
| 627 | return maxEProj;
|
|---|
| 628 | }
|
|---|
| 629 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 630 | //
|
|---|
| 631 | G4double G4VEmAdjointModel::GetSecondAdjEnergyMinForScatProjToProjCase(G4double PrimAdjEnergy,G4double Tcut)
|
|---|
| 632 | { G4double Emin=PrimAdjEnergy;
|
|---|
| 633 | if (ApplyCutInRange) Emin=PrimAdjEnergy+Tcut;
|
|---|
| 634 | return Emin;
|
|---|
| 635 | }
|
|---|
| 636 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 637 | //
|
|---|
| 638 | G4double G4VEmAdjointModel::GetSecondAdjEnergyMaxForProdToProjCase(G4double )
|
|---|
| 639 | { return HighEnergyLimit;
|
|---|
| 640 | }
|
|---|
| 641 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 642 | //
|
|---|
| 643 | G4double G4VEmAdjointModel::GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
|
|---|
| 644 | { G4double minEProj=PrimAdjEnergy;
|
|---|
| 645 | if (second_part_of_same_type) minEProj=PrimAdjEnergy*2.;
|
|---|
| 646 | return minEProj;
|
|---|
| 647 | }
|
|---|
| 648 | ////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 649 | //
|
|---|
| 650 | void G4VEmAdjointModel::DefineCurrentMaterial(const G4MaterialCutsCouple* couple)
|
|---|
| 651 | { if(couple != currentCouple) {
|
|---|
| 652 | currentCouple = const_cast<G4MaterialCutsCouple*> (couple);
|
|---|
| 653 | currentMaterial = const_cast<G4Material*> (couple->GetMaterial());
|
|---|
| 654 | currentCoupleIndex = couple->GetIndex();
|
|---|
| 655 | currentMaterialIndex = currentMaterial->GetIndex();
|
|---|
| 656 | size_t idx=56;
|
|---|
| 657 | currentTcutForDirectPrim =0.00000000001;
|
|---|
| 658 | if (theAdjEquivOfDirectPrimPartDef) {
|
|---|
| 659 | if (theAdjEquivOfDirectPrimPartDef->GetParticleName() == "adj_gamma") idx = 0;
|
|---|
| 660 | else if (theAdjEquivOfDirectPrimPartDef->GetParticleName() == "adj_e-") idx = 1;
|
|---|
| 661 | else if (theAdjEquivOfDirectPrimPartDef->GetParticleName() == "adj_e+") idx = 2;
|
|---|
| 662 | if (idx <56){
|
|---|
| 663 | const std::vector<G4double>* aVec = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(idx);
|
|---|
| 664 | currentTcutForDirectPrim=(*aVec)[currentCoupleIndex];
|
|---|
| 665 | }
|
|---|
| 666 | }
|
|---|
| 667 |
|
|---|
| 668 | currentTcutForDirectSecond =0.00000000001;
|
|---|
| 669 | if (theAdjEquivOfDirectPrimPartDef == theAdjEquivOfDirectSecondPartDef) {
|
|---|
| 670 | currentTcutForDirectSecond = currentTcutForDirectPrim;
|
|---|
| 671 | }
|
|---|
| 672 | else {
|
|---|
| 673 | if (theAdjEquivOfDirectSecondPartDef){
|
|---|
| 674 | if (theAdjEquivOfDirectSecondPartDef->GetParticleName() == "adj_gamma") idx = 0;
|
|---|
| 675 | else if (theAdjEquivOfDirectSecondPartDef->GetParticleName() == "adj_e-") idx = 1;
|
|---|
| 676 | else if (theAdjEquivOfDirectSecondPartDef->GetParticleName() == "adj_e+") idx = 2;
|
|---|
| 677 | const std::vector<G4double>* aVec = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(idx);
|
|---|
| 678 | currentTcutForDirectSecond=(*aVec)[currentCoupleIndex];
|
|---|
| 679 | if (idx <56){
|
|---|
| 680 | const std::vector<G4double>* aVec = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(idx);
|
|---|
| 681 | currentTcutForDirectPrim=(*aVec)[currentCoupleIndex];
|
|---|
| 682 | }
|
|---|
| 683 |
|
|---|
| 684 |
|
|---|
| 685 | }
|
|---|
| 686 | }
|
|---|
| 687 | }
|
|---|
| 688 | }
|
|---|
| 689 | ////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 690 | //
|
|---|
| 691 | void G4VEmAdjointModel::SetHighEnergyLimit(G4double aVal)
|
|---|
| 692 | { HighEnergyLimit=aVal;
|
|---|
| 693 | if (theDirectEMModel) theDirectEMModel->SetHighEnergyLimit( aVal);
|
|---|
| 694 | }
|
|---|
| 695 | ////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 696 | //
|
|---|
| 697 | void G4VEmAdjointModel::SetLowEnergyLimit(G4double aVal)
|
|---|
| 698 | {
|
|---|
| 699 | LowEnergyLimit=aVal;
|
|---|
| 700 | if (theDirectEMModel) theDirectEMModel->SetLowEnergyLimit( aVal);
|
|---|
| 701 | }
|
|---|
| 702 | ////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 703 | //
|
|---|
| 704 | void G4VEmAdjointModel::SetAdjointEquivalentOfDirectPrimaryParticleDefinition(G4ParticleDefinition* aPart)
|
|---|
| 705 | {
|
|---|
| 706 | theAdjEquivOfDirectPrimPartDef=aPart;
|
|---|
| 707 | if (theAdjEquivOfDirectPrimPartDef->GetParticleName() =="adj_e-")
|
|---|
| 708 | theDirectPrimaryPartDef=G4Electron::Electron();
|
|---|
| 709 | if (theAdjEquivOfDirectPrimPartDef->GetParticleName() =="adj_gamma")
|
|---|
| 710 | theDirectPrimaryPartDef=G4Gamma::Gamma();
|
|---|
| 711 | }
|
|---|