// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4GammaConversionToMuons.hh,v 1.2 2006/06/29 19:32:18 gunter Exp $ // GEANT4 tag $Name: geant4-09-02 $ // // ------------ G4GammaConversionToMuons physics process ------ // by H.Burkhardt, S. Kelner and R. Kokoulin, April 2002 // ----------------------------------------------------------------------------- // // 05-08-04: suppression of .icc file (mma) // 13-08-04, public ComputeCrossSectionPerAtom() and ComputeMeanFreePath() (mma) // // class description // // gamma ---> mu+ mu- // inherit from G4VDiscreteProcess // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #ifndef G4GammaConversionToMuons_h #define G4GammaConversionToMuons_h 1 #include "G4ios.hh" #include "globals.hh" #include "Randomize.hh" #include "G4VDiscreteProcess.hh" #include "G4PhysicsTable.hh" #include "G4PhysicsLogVector.hh" #include "G4Element.hh" #include "G4Gamma.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Step.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... class G4GammaConversionToMuons : public G4VDiscreteProcess { public: // with description G4GammaConversionToMuons(const G4String& processName ="GammaToMuPair", G4ProcessType type = fElectromagnetic); ~G4GammaConversionToMuons(); G4bool IsApplicable(const G4ParticleDefinition&); // true for Gamma only. void BuildPhysicsTable(const G4ParticleDefinition&); // here dummy, the total cross section parametrization is used rather // than tables, just calling PrintInfoDefinition void PrintInfoDefinition(); // Print few lines of informations about the process: validity range, // origine ..etc.. // Invoked by BuildThePhysicsTable(). void SetCrossSecFactor(G4double fac); // Set the factor to artificially increase the crossSection (default 1) G4double GetCrossSecFactor() { return CrossSecFactor;} // Get the factor to artificially increase the cross section G4double GetMeanFreePath(const G4Track& aTrack, G4double previousStepSize, G4ForceCondition* condition); // It returns the MeanFreePath of the process for the current track : // (energy, material) // The previousStepSize and G4ForceCondition* are not used. // This function overloads a virtual function of the base class. // It is invoked by the ProcessManager of the Particle. G4double GetCrossSectionPerAtom(const G4DynamicParticle* aDynamicGamma, G4Element* anElement); // It returns the total CrossSectionPerAtom of the process, // for the current DynamicGamma (energy), in anElement. G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); // It computes the final state of the process (at end of step), // returned as a ParticleChange object. // This function overloads a virtual function of the base class. // It is invoked by the ProcessManager of the Particle. virtual G4double ComputeCrossSectionPerAtom(G4double GammaEnergy, G4double AtomicZ,G4double AtomicA); G4double ComputeMeanFreePath (G4double GammaEnergy, G4Material* aMaterial); private: G4Element* SelectRandomAtom(const G4DynamicParticle* aDynamicGamma, G4Material* aMaterial); private: // hide assignment operator as private G4GammaConversionToMuons& operator=(const G4GammaConversionToMuons &right); G4GammaConversionToMuons(const G4GammaConversionToMuons& ); private: G4double LowestEnergyLimit ; // low energy limit of the tables G4double HighestEnergyLimit ; // high energy limit of the tables G4double fminimalEnergy; // minimalEnergy of produced particles G4double MeanFreePath; // actual MeanFreePath (current medium) G4double CrossSecFactor; // factor to artificially increase // the cross section }; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #endif