// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4eeToHadronsModel.cc,v 1.9 2008/07/10 18:06:39 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-02-ref-02 $ // // ------------------------------------------------------------------- // // GEANT4 Class header file // // // File name: G4eeToHadronsModel // // Author: Vladimir Ivanchenko // // Creation date: 12.08.2003 // // Modifications: // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) // 18-05-05 Use optimized interfaces (V.Ivantchenko) // // // ------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4eeToHadronsModel.hh" #include "Randomize.hh" #include "G4Electron.hh" #include "G4Gamma.hh" #include "G4Positron.hh" #include "G4PionPlus.hh" #include "Randomize.hh" #include "G4Vee2hadrons.hh" #include "G4PhysicsVector.hh" #include "G4PhysicsLogVector.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; G4eeToHadronsModel::G4eeToHadronsModel(G4Vee2hadrons* m, G4int ver, const G4String& nam) : G4VEmModel(nam), model(m), crossPerElectron(0), crossBornPerElectron(0), isInitialised(false), nbins(100), verbose(ver) { theGamma = G4Gamma::Gamma(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4eeToHadronsModel::~G4eeToHadronsModel() { delete model; delete crossPerElectron; delete crossBornPerElectron; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eeToHadronsModel::Initialise(const G4ParticleDefinition*, const G4DataVector&) { if(isInitialised) return; isInitialised = true; // Lab system highKinEnergy = HighEnergyLimit(); lowKinEnergy = LowEnergyLimit(); // CM system emin = model->LowEnergy(); emax = model->HighEnergy(); G4double emin0 = 2.0*electron_mass_c2*sqrt(1.0 + 0.5*lowKinEnergy/electron_mass_c2); G4double emax0 = 2.0*electron_mass_c2*sqrt(1.0 + 0.5*highKinEnergy/electron_mass_c2); // recompute low energy if(emin0 > emax) { emin0 = emax; model->SetLowEnergy(emin0); } if(emin > emin0) { emin0 = emin; lowKinEnergy = 0.5*emin*emin/electron_mass_c2 - 2.0*electron_mass_c2; SetLowEnergyLimit(lowKinEnergy); } // recompute high energy if(emax < emax0) { emax0 = emax; highKinEnergy = 0.5*emax*emax/electron_mass_c2 - 2.0*electron_mass_c2; SetHighEnergyLimit(highKinEnergy); } // peak energy epeak = std::min(model->PeakEnergy(), emax); peakKinEnergy = 0.5*epeak*epeak/electron_mass_c2 - 2.0*electron_mass_c2; if(verbose>0) { G4cout << "G4eeToHadronsModel::Initialise: " << G4endl; G4cout << "LabSystem: emin(GeV)= " << lowKinEnergy/GeV << " epeak(GeV)= " << peakKinEnergy/GeV << " emax(GeV)= " << highKinEnergy/GeV << G4endl; G4cout << "SM System: emin(MeV)= " << emin/MeV << " epeak(MeV)= " << epeak/MeV << " emax(MeV)= " << emax/MeV << G4endl; } if(lowKinEnergy < peakKinEnergy) { crossBornPerElectron = model->PhysicsVector(emin, emax); crossPerElectron = model->PhysicsVector(emin, emax); nbins = crossPerElectron->GetVectorLength(); for(G4int i=0; iGetLowEdgeEnergy(i); G4double cs = model->ComputeCrossSection(e); crossBornPerElectron->PutValue(i, cs); } ComputeCMCrossSectionPerElectron(); } if(verbose>1) { G4cout << "G4eeToHadronsModel: Cross secsions per electron" << " nbins= " << nbins << " emin(MeV)= " << emin/MeV << " emax(MeV)= " << emax/MeV << G4endl; G4bool b; for(G4int i=0; iGetLowEdgeEnergy(i); G4double s1 = crossPerElectron->GetValue(e, b); G4double s2 = crossBornPerElectron->GetValue(e, b); G4cout << "E(MeV)= " << e/MeV << " cross(nb)= " << s1/nanobarn << " crossBorn(nb)= " << s2/nanobarn << G4endl; } } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eeToHadronsModel::CrossSectionPerVolume( const G4Material* mat, const G4ParticleDefinition* p, G4double kineticEnergy, G4double, G4double) { return mat->GetElectronDensity()* ComputeCrossSectionPerElectron(p, kineticEnergy); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eeToHadronsModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kineticEnergy, G4double Z, G4double, G4double, G4double) { return Z*ComputeCrossSectionPerElectron(p, kineticEnergy); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4eeToHadronsModel::ComputeCrossSectionPerElectron( const G4ParticleDefinition*, G4double kineticEnergy, G4double, G4double) { G4double cross = 0.0; if(crossPerElectron) { G4bool b; G4double e = 2.0*electron_mass_c2* sqrt(1.0 + 0.5*kineticEnergy/electron_mass_c2); cross = crossPerElectron->GetValue(e, b); } // G4cout << "e= " << kineticEnergy << " cross= " << cross << G4endl; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eeToHadronsModel::SampleSecondaries(std::vector* newp, const G4MaterialCutsCouple*, const G4DynamicParticle* dParticle, G4double, G4double) { if(crossPerElectron) { G4double t = dParticle->GetKineticEnergy(); G4double e = 2.0*electron_mass_c2*sqrt(1.0 + 0.5*t/electron_mass_c2); G4LorentzVector inlv = dParticle->Get4Momentum(); G4ThreeVector inBoost = inlv.boostVector(); if(e > emin) { G4DynamicParticle* gamma = GenerateCMPhoton(e); G4LorentzVector gLv = gamma->Get4Momentum(); G4LorentzVector lv(0.0,0.0,0.0,e); lv -= gLv; G4double m = lv.m(); G4ThreeVector boost = lv.boostVector(); const G4ThreeVector dir = gamma->GetMomentumDirection(); model->SampleSecondaries(newp, m, dir); G4int np = newp->size(); for(G4int j=0; jGet4Momentum(); v.boost(boost); v.boost(inBoost); dp->Set4Momentum(v); } gLv.boost(inBoost); gamma->Set4Momentum(gLv); newp->push_back(gamma); } } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4eeToHadronsModel::ComputeCMCrossSectionPerElectron() { G4bool b; for(G4int i=0; iGetLowEdgeEnergy(i); G4double cs = 0.0; if(i > 0) { G4double L = 2.0*log(e/electron_mass_c2); G4double bt = 2.0*fine_structure_const*(L - 1.0)/pi; G4double btm1= bt - 1.0; G4double del = 1. + fine_structure_const*(1.5*L + pi*pi/3. -2.)/pi; G4double s1 = crossBornPerElectron->GetValue(e, b); G4double e1 = crossPerElectron->GetLowEdgeEnergy(i-1); G4double x1 = 1. - e1/e; cs += s1*(del*pow(x1,bt) - bt*(x1 - 0.25*x1*x1)); if(i > 1) { G4double e2 = e1; G4double x2 = x1; G4double s2 = crossBornPerElectron->GetValue(e2, b); G4double w2 = bt*(del*pow(x2,btm1) - 1.0 + 0.5*x2); for(G4int j=i-2; j>=0; j--) { e1 = crossPerElectron->GetLowEdgeEnergy(j); x1 = 1. - e1/e; G4double s1 = crossBornPerElectron->GetValue(e1, b); G4double w1 = bt*(del*pow(x1,btm1) - 1.0 + 0.5*x1); cs += 0.5*(x1 - x2)*(w2*s2 + w1*s1); e2 = e1; x2 = x1; s2 = s1; w2 = w1; } } } crossPerElectron->PutValue(i, cs); // G4cout << "e= " << e << " cs= " << cs << G4endl; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4DynamicParticle* G4eeToHadronsModel::GenerateCMPhoton(G4double e) { G4bool b; G4double x; G4DynamicParticle* gamma = 0; G4double L = 2.0*log(e/electron_mass_c2); G4double bt = 2.0*fine_structure_const*(L - 1.)/pi; G4double btm1= bt - 1.0; G4double del = 1. + fine_structure_const*(1.5*L + pi*pi/3. -2.)/pi; G4double s0 = crossBornPerElectron->GetValue(e, b); G4double de = (emax - emin)/(G4double)nbins; G4double x0 = min(de,e - emin)/e; G4double ds = crossBornPerElectron->GetValue(e, b) *(del*pow(x0,bt) - bt*(x0 - 0.25*x0*x0)); G4double e1 = e*(1. - x0); if(e1 < emax && s0*G4UniformRand()GetValue(e1, b); G4double w1 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x); G4double grej = s1*w1; G4double f; // G4cout << "e= " << e/GeV << " epeak= " << epeak/GeV // << " s1= " << s1 << " w1= " << w1 // << " grej= " << grej << G4endl; // Above emax cross section is 0 if(e1 > emax) { x = 1. - emax/e; G4double s2 = crossBornPerElectron->GetValue(emax, b); G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x); grej = s2*w2; // G4cout << "emax= " << emax << " s2= " << s2 << " w2= " << w2 // << " grej= " << grej << G4endl; } if(e1 > epeak) { x = 1. - epeak/e; G4double s2 = crossBornPerElectron->GetValue(epeak, b); G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x); grej = max(grej,s2*w2); //G4cout << "epeak= " << epeak << " s2= " << s2 << " w2= " << w2 // << " grej= " << grej << G4endl; } G4double xmin = 1. - e1/e; if(e1 > emax) xmin = 1. - emax/e; G4double xmax = 1. - emin/e; do { x = xmin + G4UniformRand()*(xmax - xmin); G4double s2 = crossBornPerElectron->GetValue((1.0 - x)*e, b); G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x); //G4cout << "x= " << x << " xmin= " << xmin << " xmax= " << xmax // << " s2= " << s2 << " w2= " << w2 // << G4endl; f = s2*w2; if(f > grej) { G4cout << "G4DynamicParticle* G4eeToHadronsModel:WARNING " << f << " > " << grej << " majorant is`small!" << G4endl; } } while (f < grej*G4UniformRand()); } G4ThreeVector dir(0.0,0.0,1.0); gamma = new G4DynamicParticle(theGamma,dir,x*e); return gamma; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....