| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4mplIonisationWithDeltaModel.cc,v 1.1 2010/10/26 15:40:03 vnivanch Exp $
|
|---|
| 27 | // GEANT4 tag $Name: emhighenergy-V09-03-02 $
|
|---|
| 28 | //
|
|---|
| 29 | // -------------------------------------------------------------------
|
|---|
| 30 | //
|
|---|
| 31 | // GEANT4 Class header file
|
|---|
| 32 | //
|
|---|
| 33 | //
|
|---|
| 34 | // File name: G4mplIonisationWithDeltaModel
|
|---|
| 35 | //
|
|---|
| 36 | // Author: Vladimir Ivanchenko
|
|---|
| 37 | //
|
|---|
| 38 | // Creation date: 06.09.2005
|
|---|
| 39 | //
|
|---|
| 40 | // Modifications:
|
|---|
| 41 | // 12.08.2007 Changing low energy approximation and extrapolation.
|
|---|
| 42 | // Small bug fixing and refactoring (M. Vladymyrov)
|
|---|
| 43 | // 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko)
|
|---|
| 44 | //
|
|---|
| 45 | //
|
|---|
| 46 | // -------------------------------------------------------------------
|
|---|
| 47 | // References
|
|---|
| 48 | // [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles,
|
|---|
| 49 | // S.P. Ahlen, Rev. Mod. Phys 52(1980), p121
|
|---|
| 50 | // [2] K.A. Milton arXiv:hep-ex/0602040
|
|---|
| 51 | // [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347
|
|---|
| 52 |
|
|---|
| 53 |
|
|---|
| 54 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 55 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 56 |
|
|---|
| 57 | #include "G4mplIonisationWithDeltaModel.hh"
|
|---|
| 58 | #include "Randomize.hh"
|
|---|
| 59 | #include "G4LossTableManager.hh"
|
|---|
| 60 | #include "G4ParticleChangeForLoss.hh"
|
|---|
| 61 | #include "G4Electron.hh"
|
|---|
| 62 | #include "G4DynamicParticle.hh"
|
|---|
| 63 |
|
|---|
| 64 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 65 |
|
|---|
| 66 | using namespace std;
|
|---|
| 67 |
|
|---|
| 68 | G4mplIonisationWithDeltaModel::G4mplIonisationWithDeltaModel(G4double mCharge, const G4String& nam)
|
|---|
| 69 | : G4VEmModel(nam),G4VEmFluctuationModel(nam),
|
|---|
| 70 | magCharge(mCharge),
|
|---|
| 71 | twoln10(log(100.0)),
|
|---|
| 72 | betalow(0.01),
|
|---|
| 73 | betalim(0.1),
|
|---|
| 74 | beta2lim(betalim*betalim),
|
|---|
| 75 | bg2lim(beta2lim*(1.0 + beta2lim))
|
|---|
| 76 | {
|
|---|
| 77 | nmpl = G4int(abs(magCharge) * 2 * fine_structure_const + 0.5);
|
|---|
| 78 | if(nmpl > 6) { nmpl = 6; }
|
|---|
| 79 | else if(nmpl < 1) { nmpl = 1; }
|
|---|
| 80 | pi_hbarc2_over_mc2 = pi * hbarc * hbarc / electron_mass_c2;
|
|---|
| 81 | chargeSquare = magCharge * magCharge;
|
|---|
| 82 | dedxlim = 45.*nmpl*nmpl*GeV*cm2/g;
|
|---|
| 83 | fParticleChange = 0;
|
|---|
| 84 | theElectron = G4Electron::Electron();
|
|---|
| 85 | G4cout << "### Monopole ionisation model with d-electron production, Gmag= "
|
|---|
| 86 | << magCharge/eplus << G4endl;
|
|---|
| 87 | mass = 0.0;
|
|---|
| 88 | }
|
|---|
| 89 |
|
|---|
| 90 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 91 |
|
|---|
| 92 | G4mplIonisationWithDeltaModel::~G4mplIonisationWithDeltaModel()
|
|---|
| 93 | {}
|
|---|
| 94 |
|
|---|
| 95 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 96 |
|
|---|
| 97 | void
|
|---|
| 98 | G4mplIonisationWithDeltaModel::Initialise(const G4ParticleDefinition* p,
|
|---|
| 99 | const G4DataVector&)
|
|---|
| 100 | {
|
|---|
| 101 | monopole = p;
|
|---|
| 102 | mass = monopole->GetPDGMass();
|
|---|
| 103 | if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); }
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 107 |
|
|---|
| 108 | G4double
|
|---|
| 109 | G4mplIonisationWithDeltaModel::ComputeDEDXPerVolume(const G4Material* material,
|
|---|
| 110 | const G4ParticleDefinition* p,
|
|---|
| 111 | G4double kineticEnergy,
|
|---|
| 112 | G4double maxEnergy)
|
|---|
| 113 | {
|
|---|
| 114 | G4double tmax = MaxSecondaryEnergy(p,kineticEnergy);
|
|---|
| 115 | G4double cutEnergy = std::min(tmax, maxEnergy);
|
|---|
| 116 | G4double tau = kineticEnergy / mass;
|
|---|
| 117 | G4double gam = tau + 1.0;
|
|---|
| 118 | G4double bg2 = tau * (tau + 2.0);
|
|---|
| 119 | G4double beta2 = bg2 / (gam * gam);
|
|---|
| 120 | G4double beta = sqrt(beta2);
|
|---|
| 121 |
|
|---|
| 122 | // low-energy asymptotic formula
|
|---|
| 123 | G4double dedx = dedxlim*beta*material->GetDensity();
|
|---|
| 124 |
|
|---|
| 125 | // above asymptotic
|
|---|
| 126 | if(beta > betalow) {
|
|---|
| 127 |
|
|---|
| 128 | // high energy
|
|---|
| 129 | if(beta >= betalim) {
|
|---|
| 130 | dedx = ComputeDEDXAhlen(material, bg2, cutEnergy);
|
|---|
| 131 |
|
|---|
| 132 | } else {
|
|---|
| 133 |
|
|---|
| 134 | G4double dedx1 = dedxlim*betalow*material->GetDensity();
|
|---|
| 135 | G4double dedx2 = ComputeDEDXAhlen(material, bg2lim, cutEnergy);
|
|---|
| 136 |
|
|---|
| 137 | // extrapolation between two formula
|
|---|
| 138 | G4double kapa2 = beta - betalow;
|
|---|
| 139 | G4double kapa1 = betalim - beta;
|
|---|
| 140 | dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2);
|
|---|
| 141 | }
|
|---|
| 142 | }
|
|---|
| 143 | return dedx;
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 147 |
|
|---|
| 148 | G4double
|
|---|
| 149 | G4mplIonisationWithDeltaModel::ComputeDEDXAhlen(const G4Material* material,
|
|---|
| 150 | G4double bg2,
|
|---|
| 151 | G4double cutEnergy)
|
|---|
| 152 | {
|
|---|
| 153 | G4double eDensity = material->GetElectronDensity();
|
|---|
| 154 | G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
|
|---|
| 155 |
|
|---|
| 156 | // Ahlen's formula for nonconductors, [1]p157, f(5.7)
|
|---|
| 157 | G4double dedx =
|
|---|
| 158 | 0.5*(log(2.0 * electron_mass_c2 * bg2*cutEnergy / (eexc*eexc)) - 1.0);
|
|---|
| 159 |
|
|---|
| 160 | // Kazama et al. cross-section correction
|
|---|
| 161 | G4double k = 0.406;
|
|---|
| 162 | if(nmpl > 1) { k = 0.346; }
|
|---|
| 163 |
|
|---|
| 164 | // Bloch correction
|
|---|
| 165 | const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685};
|
|---|
| 166 |
|
|---|
| 167 | dedx += 0.5 * k - B[nmpl];
|
|---|
| 168 |
|
|---|
| 169 | // density effect correction
|
|---|
| 170 | G4double x = log(bg2)/twoln10;
|
|---|
| 171 | dedx -= material->GetIonisation()->DensityCorrection(x);
|
|---|
| 172 |
|
|---|
| 173 | // now compute the total ionization loss
|
|---|
| 174 | dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl;
|
|---|
| 175 |
|
|---|
| 176 | if (dedx < 0.0) { dedx = 0; }
|
|---|
| 177 | return dedx;
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 181 |
|
|---|
| 182 | G4double
|
|---|
| 183 | G4mplIonisationWithDeltaModel::ComputeCrossSectionPerElectron(
|
|---|
| 184 | const G4ParticleDefinition* p,
|
|---|
| 185 | G4double kineticEnergy,
|
|---|
| 186 | G4double cutEnergy,
|
|---|
| 187 | G4double maxKinEnergy)
|
|---|
| 188 | {
|
|---|
| 189 | G4double cross = 0.0;
|
|---|
| 190 | G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
|
|---|
| 191 | G4double maxEnergy = min(tmax,maxKinEnergy);
|
|---|
| 192 | if(cutEnergy < maxEnergy) {
|
|---|
| 193 | cross = (1.0/cutEnergy - 1.0/maxEnergy)*twopi_mc2_rcl2*chargeSquare;
|
|---|
| 194 | }
|
|---|
| 195 | return cross;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 199 |
|
|---|
| 200 | G4double
|
|---|
| 201 | G4mplIonisationWithDeltaModel::ComputeCrossSectionPerAtom(
|
|---|
| 202 | const G4ParticleDefinition* p,
|
|---|
| 203 | G4double kineticEnergy,
|
|---|
| 204 | G4double Z, G4double,
|
|---|
| 205 | G4double cutEnergy,
|
|---|
| 206 | G4double maxEnergy)
|
|---|
| 207 | {
|
|---|
| 208 | G4double cross =
|
|---|
| 209 | Z*ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy);
|
|---|
| 210 | return cross;
|
|---|
| 211 | }
|
|---|
| 212 |
|
|---|
| 213 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 214 |
|
|---|
| 215 | void
|
|---|
| 216 | G4mplIonisationWithDeltaModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp,
|
|---|
| 217 | const G4MaterialCutsCouple*,
|
|---|
| 218 | const G4DynamicParticle* dp,
|
|---|
| 219 | G4double minKinEnergy,
|
|---|
| 220 | G4double maxEnergy)
|
|---|
| 221 | {
|
|---|
| 222 | G4double kineticEnergy = dp->GetKineticEnergy();
|
|---|
| 223 | G4double tmax = MaxSecondaryEnergy(dp->GetDefinition(),kineticEnergy);
|
|---|
| 224 |
|
|---|
| 225 | G4double maxKinEnergy = std::min(maxEnergy,tmax);
|
|---|
| 226 | if(minKinEnergy >= maxKinEnergy) { return; }
|
|---|
| 227 |
|
|---|
| 228 | //G4cout << "G4mplIonisationWithDeltaModel::SampleSecondaries: E(GeV)= "
|
|---|
| 229 | // << kineticEnergy/GeV << " M(GeV)= " << mass/GeV
|
|---|
| 230 | // << " tmin(MeV)= " << minKinEnergy/MeV << G4endl;
|
|---|
| 231 |
|
|---|
| 232 | G4double totEnergy = kineticEnergy + mass;
|
|---|
| 233 | G4double etot2 = totEnergy*totEnergy;
|
|---|
| 234 | G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2;
|
|---|
| 235 |
|
|---|
| 236 | // sampling without nuclear size effect
|
|---|
| 237 | G4double q = G4UniformRand();
|
|---|
| 238 | G4double deltaKinEnergy = minKinEnergy*maxKinEnergy
|
|---|
| 239 | /(minKinEnergy*(1.0 - q) + maxKinEnergy*q);
|
|---|
| 240 |
|
|---|
| 241 | // delta-electron is produced
|
|---|
| 242 | G4double totMomentum = totEnergy*sqrt(beta2);
|
|---|
| 243 | G4double deltaMomentum =
|
|---|
| 244 | sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
|
|---|
| 245 | G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) /
|
|---|
| 246 | (deltaMomentum * totMomentum);
|
|---|
| 247 | if(cost > 1.0) { cost = 1.0; }
|
|---|
| 248 |
|
|---|
| 249 | G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
|
|---|
| 250 |
|
|---|
| 251 | G4double phi = twopi * G4UniformRand() ;
|
|---|
| 252 |
|
|---|
| 253 | G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost);
|
|---|
| 254 | G4ThreeVector direction = dp->GetMomentumDirection();
|
|---|
| 255 | deltaDirection.rotateUz(direction);
|
|---|
| 256 |
|
|---|
| 257 | // create G4DynamicParticle object for delta ray
|
|---|
| 258 | G4DynamicParticle* delta =
|
|---|
| 259 | new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy);
|
|---|
| 260 |
|
|---|
| 261 | vdp->push_back(delta);
|
|---|
| 262 |
|
|---|
| 263 | // Change kinematics of primary particle
|
|---|
| 264 | kineticEnergy -= deltaKinEnergy;
|
|---|
| 265 | G4ThreeVector finalP = direction*totMomentum - deltaDirection*deltaMomentum;
|
|---|
| 266 | finalP = finalP.unit();
|
|---|
| 267 |
|
|---|
| 268 | fParticleChange->SetProposedKineticEnergy(kineticEnergy);
|
|---|
| 269 | fParticleChange->SetProposedMomentumDirection(finalP);
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 273 |
|
|---|
| 274 | G4double G4mplIonisationWithDeltaModel::SampleFluctuations(
|
|---|
| 275 | const G4Material* material,
|
|---|
| 276 | const G4DynamicParticle* dp,
|
|---|
| 277 | G4double& tmax,
|
|---|
| 278 | G4double& length,
|
|---|
| 279 | G4double& meanLoss)
|
|---|
| 280 | {
|
|---|
| 281 | G4double siga = Dispersion(material,dp,tmax,length);
|
|---|
| 282 | G4double loss = meanLoss;
|
|---|
| 283 | siga = sqrt(siga);
|
|---|
| 284 | G4double twomeanLoss = meanLoss + meanLoss;
|
|---|
| 285 |
|
|---|
| 286 | if(twomeanLoss < siga) {
|
|---|
| 287 | G4double x;
|
|---|
| 288 | do {
|
|---|
| 289 | loss = twomeanLoss*G4UniformRand();
|
|---|
| 290 | x = (loss - meanLoss)/siga;
|
|---|
| 291 | } while (1.0 - 0.5*x*x < G4UniformRand());
|
|---|
| 292 | } else {
|
|---|
| 293 | do {
|
|---|
| 294 | loss = G4RandGauss::shoot(meanLoss,siga);
|
|---|
| 295 | } while (0.0 > loss || loss > twomeanLoss);
|
|---|
| 296 | }
|
|---|
| 297 | return loss;
|
|---|
| 298 | }
|
|---|
| 299 |
|
|---|
| 300 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 301 |
|
|---|
| 302 | G4double
|
|---|
| 303 | G4mplIonisationWithDeltaModel::Dispersion(const G4Material* material,
|
|---|
| 304 | const G4DynamicParticle* dp,
|
|---|
| 305 | G4double& tmax,
|
|---|
| 306 | G4double& length)
|
|---|
| 307 | {
|
|---|
| 308 | G4double siga = 0.0;
|
|---|
| 309 | G4double tau = dp->GetKineticEnergy()/mass;
|
|---|
| 310 | if(tau > 0.0) {
|
|---|
| 311 | G4double electronDensity = material->GetElectronDensity();
|
|---|
| 312 | G4double gam = tau + 1.0;
|
|---|
| 313 | G4double invbeta2 = (gam*gam)/(tau * (tau+2.0));
|
|---|
| 314 | siga = (invbeta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
|
|---|
| 315 | * electronDensity * chargeSquare;
|
|---|
| 316 | }
|
|---|
| 317 | return siga;
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 321 |
|
|---|
| 322 | G4double
|
|---|
| 323 | G4mplIonisationWithDeltaModel::MaxSecondaryEnergy(const G4ParticleDefinition*,
|
|---|
| 324 | G4double kinEnergy)
|
|---|
| 325 | {
|
|---|
| 326 | G4double tau = kinEnergy/mass;
|
|---|
| 327 | return 2.0*electron_mass_c2*tau*(tau + 2.);
|
|---|
| 328 | }
|
|---|
| 329 |
|
|---|
| 330 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|