// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4mplIonisationWithDeltaModel.cc,v 1.1 2010/10/26 15:40:03 vnivanch Exp $ // GEANT4 tag $Name: emhighenergy-V09-03-02 $ // // ------------------------------------------------------------------- // // GEANT4 Class header file // // // File name: G4mplIonisationWithDeltaModel // // Author: Vladimir Ivanchenko // // Creation date: 06.09.2005 // // Modifications: // 12.08.2007 Changing low energy approximation and extrapolation. // Small bug fixing and refactoring (M. Vladymyrov) // 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko) // // // ------------------------------------------------------------------- // References // [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles, // S.P. Ahlen, Rev. Mod. Phys 52(1980), p121 // [2] K.A. Milton arXiv:hep-ex/0602040 // [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "G4mplIonisationWithDeltaModel.hh" #include "Randomize.hh" #include "G4LossTableManager.hh" #include "G4ParticleChangeForLoss.hh" #include "G4Electron.hh" #include "G4DynamicParticle.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; G4mplIonisationWithDeltaModel::G4mplIonisationWithDeltaModel(G4double mCharge, const G4String& nam) : G4VEmModel(nam),G4VEmFluctuationModel(nam), magCharge(mCharge), twoln10(log(100.0)), betalow(0.01), betalim(0.1), beta2lim(betalim*betalim), bg2lim(beta2lim*(1.0 + beta2lim)) { nmpl = G4int(abs(magCharge) * 2 * fine_structure_const + 0.5); if(nmpl > 6) { nmpl = 6; } else if(nmpl < 1) { nmpl = 1; } pi_hbarc2_over_mc2 = pi * hbarc * hbarc / electron_mass_c2; chargeSquare = magCharge * magCharge; dedxlim = 45.*nmpl*nmpl*GeV*cm2/g; fParticleChange = 0; theElectron = G4Electron::Electron(); G4cout << "### Monopole ionisation model with d-electron production, Gmag= " << magCharge/eplus << G4endl; mass = 0.0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4mplIonisationWithDeltaModel::~G4mplIonisationWithDeltaModel() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4mplIonisationWithDeltaModel::Initialise(const G4ParticleDefinition* p, const G4DataVector&) { monopole = p; mass = monopole->GetPDGMass(); if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4mplIonisationWithDeltaModel::ComputeDEDXPerVolume(const G4Material* material, const G4ParticleDefinition* p, G4double kineticEnergy, G4double maxEnergy) { G4double tmax = MaxSecondaryEnergy(p,kineticEnergy); G4double cutEnergy = std::min(tmax, maxEnergy); G4double tau = kineticEnergy / mass; G4double gam = tau + 1.0; G4double bg2 = tau * (tau + 2.0); G4double beta2 = bg2 / (gam * gam); G4double beta = sqrt(beta2); // low-energy asymptotic formula G4double dedx = dedxlim*beta*material->GetDensity(); // above asymptotic if(beta > betalow) { // high energy if(beta >= betalim) { dedx = ComputeDEDXAhlen(material, bg2, cutEnergy); } else { G4double dedx1 = dedxlim*betalow*material->GetDensity(); G4double dedx2 = ComputeDEDXAhlen(material, bg2lim, cutEnergy); // extrapolation between two formula G4double kapa2 = beta - betalow; G4double kapa1 = betalim - beta; dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2); } } return dedx; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4mplIonisationWithDeltaModel::ComputeDEDXAhlen(const G4Material* material, G4double bg2, G4double cutEnergy) { G4double eDensity = material->GetElectronDensity(); G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); // Ahlen's formula for nonconductors, [1]p157, f(5.7) G4double dedx = 0.5*(log(2.0 * electron_mass_c2 * bg2*cutEnergy / (eexc*eexc)) - 1.0); // Kazama et al. cross-section correction G4double k = 0.406; if(nmpl > 1) { k = 0.346; } // Bloch correction const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685}; dedx += 0.5 * k - B[nmpl]; // density effect correction G4double x = log(bg2)/twoln10; dedx -= material->GetIonisation()->DensityCorrection(x); // now compute the total ionization loss dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl; if (dedx < 0.0) { dedx = 0; } return dedx; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4mplIonisationWithDeltaModel::ComputeCrossSectionPerElectron( const G4ParticleDefinition* p, G4double kineticEnergy, G4double cutEnergy, G4double maxKinEnergy) { G4double cross = 0.0; G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); G4double maxEnergy = min(tmax,maxKinEnergy); if(cutEnergy < maxEnergy) { cross = (1.0/cutEnergy - 1.0/maxEnergy)*twopi_mc2_rcl2*chargeSquare; } return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4mplIonisationWithDeltaModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition* p, G4double kineticEnergy, G4double Z, G4double, G4double cutEnergy, G4double maxEnergy) { G4double cross = Z*ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy); return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4mplIonisationWithDeltaModel::SampleSecondaries(vector* vdp, const G4MaterialCutsCouple*, const G4DynamicParticle* dp, G4double minKinEnergy, G4double maxEnergy) { G4double kineticEnergy = dp->GetKineticEnergy(); G4double tmax = MaxSecondaryEnergy(dp->GetDefinition(),kineticEnergy); G4double maxKinEnergy = std::min(maxEnergy,tmax); if(minKinEnergy >= maxKinEnergy) { return; } //G4cout << "G4mplIonisationWithDeltaModel::SampleSecondaries: E(GeV)= " // << kineticEnergy/GeV << " M(GeV)= " << mass/GeV // << " tmin(MeV)= " << minKinEnergy/MeV << G4endl; G4double totEnergy = kineticEnergy + mass; G4double etot2 = totEnergy*totEnergy; G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2; // sampling without nuclear size effect G4double q = G4UniformRand(); G4double deltaKinEnergy = minKinEnergy*maxKinEnergy /(minKinEnergy*(1.0 - q) + maxKinEnergy*q); // delta-electron is produced G4double totMomentum = totEnergy*sqrt(beta2); G4double deltaMomentum = sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) / (deltaMomentum * totMomentum); if(cost > 1.0) { cost = 1.0; } G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); G4double phi = twopi * G4UniformRand() ; G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost); G4ThreeVector direction = dp->GetMomentumDirection(); deltaDirection.rotateUz(direction); // create G4DynamicParticle object for delta ray G4DynamicParticle* delta = new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); vdp->push_back(delta); // Change kinematics of primary particle kineticEnergy -= deltaKinEnergy; G4ThreeVector finalP = direction*totMomentum - deltaDirection*deltaMomentum; finalP = finalP.unit(); fParticleChange->SetProposedKineticEnergy(kineticEnergy); fParticleChange->SetProposedMomentumDirection(finalP); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4mplIonisationWithDeltaModel::SampleFluctuations( const G4Material* material, const G4DynamicParticle* dp, G4double& tmax, G4double& length, G4double& meanLoss) { G4double siga = Dispersion(material,dp,tmax,length); G4double loss = meanLoss; siga = sqrt(siga); G4double twomeanLoss = meanLoss + meanLoss; if(twomeanLoss < siga) { G4double x; do { loss = twomeanLoss*G4UniformRand(); x = (loss - meanLoss)/siga; } while (1.0 - 0.5*x*x < G4UniformRand()); } else { do { loss = G4RandGauss::shoot(meanLoss,siga); } while (0.0 > loss || loss > twomeanLoss); } return loss; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4mplIonisationWithDeltaModel::Dispersion(const G4Material* material, const G4DynamicParticle* dp, G4double& tmax, G4double& length) { G4double siga = 0.0; G4double tau = dp->GetKineticEnergy()/mass; if(tau > 0.0) { G4double electronDensity = material->GetElectronDensity(); G4double gam = tau + 1.0; G4double invbeta2 = (gam*gam)/(tau * (tau+2.0)); siga = (invbeta2 - 0.5) * twopi_mc2_rcl2 * tmax * length * electronDensity * chargeSquare; } return siga; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4mplIonisationWithDeltaModel::MaxSecondaryEnergy(const G4ParticleDefinition*, G4double kinEnergy) { G4double tau = kinEnergy/mass; return 2.0*electron_mass_c2*tau*(tau + 2.); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....