source: trunk/source/processes/electromagnetic/lowenergy/include/G4DNAProcess.icc@ 1201

Last change on this file since 1201 was 1196, checked in by garnier, 16 years ago

update CVS release candidate geant4.9.3.01

File size: 6.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4DNAProcess.icc,v 1.12 2009/01/20 07:50:28 sincerti Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// Contact Author: Maria Grazia Pia (Maria.Grazia.Pia@cern.ch)
31//
32// Reference: TNS Geant4-DNA paper
33//
34
35// History:
36// -----------
37// Date Name Modification
38// 28 Apr 2007 M.G. Pia Created in compliance with design described in TNS paper
39//
40// -------------------------------------------------------------------
41
42
43template <class TCrossSection,class TFinalState>
44G4double G4DNAProcess<TCrossSection,TFinalState>::GetMeanFreePath(const G4Track& track,
45 G4double /* previousStepSize */,
46 G4ForceCondition* /* condition */)
47{
48 G4double meanFreePath = DBL_MAX;
49
50 // Assume the interacting medium to be water; one of the elements must be oxygen
51 G4Material* material(track.GetMaterial());
52 size_t i = material->GetNumberOfElements();
53 while (i>0)
54 {
55 i--;
56 const G4Element* element(material->GetElement(i));
57 if (element->GetZ() == 8.)
58 {
59 // Number of oxygen atoms per volume = number of water molecules per volume
60 G4double density = material->GetAtomicNumDensityVector()[i];
61 // G4cout << "density = " << density << G4endl;
62 if (density > 0.)
63 {
64 G4double cross = crossSection.CrossSection(track);
65 if (cross > 0.0) meanFreePath = 1. / (density*cross);
66 if (meanFreePath == 0.) meanFreePath = DBL_MIN;
67 return meanFreePath;
68 }
69 }
70 } // end while
71
72 // If it ends up here, it means that the material is not water
73 G4Exception("G4DNAProcess::GetMeanFreePath - material is not water");
74 // One does not really need a return statement here
75 return DBL_MAX;
76}
77
78
79template <class TCrossSection,class TFinalState>
80G4VParticleChange* G4DNAProcess<TCrossSection,TFinalState>::PostStepDoIt(const G4Track& track, const G4Step& step)
81{
82 aParticleChange.Initialize(track);
83
84 // G4cout << "Track initialized" << G4endl;
85
86 // Interaction product
87 const G4FinalStateProduct& product = finalState.GenerateFinalState(track,step);
88
89 // Number of secondary products to be generated
90 G4int nSecondaries = product.NumberOfSecondaries();
91 aParticleChange.SetNumberOfSecondaries(nSecondaries);
92
93 // Secondaries
94 for (G4int l = 0; l<nSecondaries; l++ )
95 {
96 G4DynamicParticle* particle = product.GetSecondaries()[l];
97 if (particle != 0)
98 {
99// aParticleChange.SetNumberOfSecondaries(nSecondaries);
100 aParticleChange.AddSecondary(particle);
101 }
102 }
103
104 // Take care of incident particle to be killed, if necessary; dump its energy deposit locally
105 G4double deposit = product.GetEnergyDeposit();
106 if (deposit > 0.0) aParticleChange.ProposeLocalEnergyDeposit(deposit);
107
108 if (product.PrimaryParticleIsKilled())
109 {
110 aParticleChange.ProposeTrackStatus(fStopAndKill);
111 aParticleChange.ProposeEnergy(0.);
112 aParticleChange.ProposeMomentumDirection( 0., 0., 0. );
113
114 if (product.PrimaryParticleIsKilledAndDoNotDepositEnergy())
115 {
116 aParticleChange.ProposeLocalEnergyDeposit(deposit);
117 }
118 else
119 {
120 aParticleChange.ProposeLocalEnergyDeposit(track.GetKineticEnergy() + deposit);
121 }
122
123 }
124 else
125 {
126 // Modify incident particle kinematics taking into account the generated products
127
128 // ---- MGP ---- Temporary: assume at most one secondary product
129 // Sebastien: please check if consistent with current models or generalize
130
131 // Primary particle momentum and kinetic energy
132 G4ThreeVector primaryMomentum = track.GetMomentum();
133 G4double primaryKineticEnergy = track.GetKineticEnergy();
134
135 // Secondary product momentum and energy
136
137 G4double secondaryKineticEnergy = 0.;
138 if (nSecondaries >0 )
139 {
140 G4DynamicParticle* secondary = product.GetSecondaries()[0];
141 secondaryKineticEnergy = secondary->GetKineticEnergy();
142
143 // Calculate new primary particle kinetic energy
144 G4double finalKineticEnergy = primaryKineticEnergy - secondaryKineticEnergy - deposit;
145
146 if (finalKineticEnergy <= 0.0)
147 {
148 // Primary particle is stopped; kill it
149 aParticleChange.ProposeTrackStatus(fStopAndKill);
150 aParticleChange.ProposeEnergy(0.);
151 aParticleChange.ProposeMomentumDirection( 0., 0., 0. );
152 }
153 else
154 {
155 // Calculate new primary particle momentum: difference between original primary one and secondary
156 G4ThreeVector secondaryMomentum = secondary->GetMomentum();
157 G4ThreeVector finalMomentum = primaryMomentum - secondaryMomentum;
158 G4ThreeVector finalDirection = finalMomentum.unit();
159 aParticleChange.ProposeMomentumDirection(finalDirection);
160 aParticleChange.ProposeEnergy(finalKineticEnergy);
161 }
162 }
163 else
164 {
165 // Check whether primary particle is modified
166 if (product.PrimaryParticleIsModified())
167 {
168 G4ThreeVector finalDirection = product.GetModifiedDirection();
169 aParticleChange.ProposeMomentumDirection(finalDirection);
170 G4double finalKineticEnergy = product.GetModifiedEnergy();
171 aParticleChange.ProposeEnergy(finalKineticEnergy);
172 }
173 }
174
175 }
176
177 return G4VDiscreteProcess::PostStepDoIt(track,step );
178}
Note: See TracBrowser for help on using the repository browser.