// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4PenelopeIonisationModel.hh,v 1.5 2010/04/15 10:02:10 pandola Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // Author: Luciano Pandola // // History: // ----------- // 26 Nov 2008 L. Pandola 1st implementation. Migration from EM process // to EM model. Physics is unchanged. // 21 Oct 2009 L. Pandola Remove un-necessary methods and variables to handle // AtomicDeexcitationFlag - now demanded to G4VEmModel // Add ActivateAuger() method // 29 Mar 2010 L. Pandola Added a dummy ComputeCrossSectioPerAtom() method issueing a // warning if users try to access atomic cross sections via // G4EmCalculator // 15 Apr 2010 L. Pandola Implemented model's own version of MinEnergyCut() // // ------------------------------------------------------------------- // // Class description: // Low Energy Electromagnetic Physics, e+ and e- ionisation // with Penelope Model // ------------------------------------------------------------------- #ifndef G4PENELOPEIONISATIONMODEL_HH #define G4PENELOPEIONISATIONMODEL_HH 1 #include "globals.hh" #include "G4VEmModel.hh" #include "G4DataVector.hh" #include "G4ParticleChangeForLoss.hh" #include "G4VCrossSectionHandler.hh" #include "G4PhysicsLogVector.hh" #include "G4AtomicDeexcitation.hh" class G4ParticleDefinition; class G4DynamicParticle; class G4MaterialCutsCouple; class G4Material; class G4VEMDataSet; class G4PenelopeIonisationModel : public G4VEmModel { public: G4PenelopeIonisationModel(const G4ParticleDefinition* p=0, const G4String& processName ="PenelopeIoni"); virtual ~G4PenelopeIonisationModel(); virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); //*This is a dummy method. Never inkoved by the tracking, it just issues //*a warning if one tries to get Cross Sections per Atom via the //*G4EmCalculator. virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, G4double, G4double, G4double, G4double, G4double); virtual G4double CrossSectionPerVolume(const G4Material* material, const G4ParticleDefinition* theParticle, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy = DBL_MAX); virtual void SampleSecondaries(std::vector*, const G4MaterialCutsCouple*, const G4DynamicParticle*, G4double tmin, G4double maxEnergy); virtual G4double ComputeDEDXPerVolume(const G4Material*, const G4ParticleDefinition*, G4double kineticEnergy, G4double cutEnergy); // Min cut in kinetic energy allowed by the model virtual G4double MinEnergyCut(const G4ParticleDefinition*, const G4MaterialCutsCouple*); void SetVerbosityLevel(G4int lev){verboseLevel = lev;}; G4int GetVerbosityLevel(){return verboseLevel;}; void ActivateAuger(G4bool); protected: G4ParticleChangeForLoss* fParticleChange; private: G4PenelopeIonisationModel & operator=(const G4PenelopeIonisationModel &right); G4PenelopeIonisationModel(const G4PenelopeIonisationModel&); //Intrinsic energy limits of the model: cannot be extended by the parent process G4double fIntrinsicLowEnergyLimit; G4double fIntrinsicHighEnergyLimit; G4int verboseLevel; G4bool isInitialised; G4double CalculateDeltaFermi(G4double kinEnergy ,G4int Z, G4double electronVolumeDensity); //Methods and variables to calculate final state void CalculateDiscreteForElectrons(G4double kinEnergy,G4double cutoffEnergy, G4int Z,G4double electronVolumeDensity); void CalculateDiscreteForPositrons(G4double kinEnergy,G4double cutoffEnergy, G4int Z,G4double electronVolumeDensity); G4AtomicDeexcitation deexcitationManager; G4double kineticEnergy1; G4double cosThetaPrimary; G4double energySecondary; G4double cosThetaSecondary; G4int iOsc; //These methods are used to calculate the hard-cross section (namely they //return the hard/total cross section) G4double CalculateCrossSectionsRatio(G4double kinEnergy, G4double cutoffEnergy, G4int Z, G4double electronVolumeDensity, const G4ParticleDefinition*); //In fact the total cross section (hard+soft) is read from file //The following methods give the cross section contribution (hard and soft) from each //individual oscillator std::pair CrossSectionsRatioForElectrons(G4double kineticEnergy, G4double resEnergy, G4double densityCorrection, G4double cutoffEnergy); std::pair CrossSectionsRatioForPositrons(G4double kineticEnergy, G4double resEnergy, G4double densityCorrection, G4double cutoffEnergy); G4VCrossSectionHandler* crossSectionHandler; //These methods are used to calculate the stopping power up to the cutoff //for each individual oscillator G4double ComputeStoppingPowerForElectrons(G4double kinEnergy, G4double cutEnergy, G4double deltaFermi, G4double resEnergy); G4double ComputeStoppingPowerForPositrons(G4double kinEnergy, G4double cutEnergy, G4double deltaFermi, G4double resEnergy); //Parameters of atomic shells void ReadData(); std::map *ionizationEnergy; std::map *resonanceEnergy; std::map *occupationNumber; std::map *shellFlag; //Mean free path table. This will become obsolete! For now I need something to store //cross sections and to sample a random atom std::vector* theXSTable; std::vector* BuildCrossSectionTable(const G4ParticleDefinition*); G4int SampleRandomAtom(const G4MaterialCutsCouple*,G4double energy) const; }; #endif